МЕТОДЫ ПРИКЛАДНОЙ МАТЕМАТИКИ

Эффективное функционирование работы коксохимического предприятия во многом определяется сырьевой базой коксования.

Составление угольных шихт, которые должны обладать достаточно высокой спекаемостью и обеспечивать получение прочного кокса, является сложной задачей, зависящей от поставок углей и опыта сотрудников углеподготовительного цеха.

Подбор оптимальных составов шихт более точно можно осуществить путем использования методов прикладной математики, в т.ч. методов планирования эксперимента и статистической обработки результатов [1-3].

При выборе метода планирования эксперимента для подбора оптимальных составов смесей предпочтение отдают симплекс-решетчатому методу [1, 2], поскольку его использование допускает обработку результатов при условии, когда суммарное значение всех факторов (переменных) постоянно и равно 1 (100%), т.е. \(\Sigma x_i = 1 \), где \(x_i \) — содержание данного компонента в смеси, доли.

Для составления плана эксперимента на основании предварительных опытов или литературных источников выбирают такой тип матрицы, который адекватно отражает эмпирическую зависимость между наблюдаемыми величинами, в частности, в данной работе использовалась матрица типа \(\{3, 4\} \), в которой факторное пространство представлено правильным симплексом в виде равностороннего треугольника. Такая матрица применяется для трехкомпонентных шихт с последующим составлением уравнения регрессии четвертого порядка. Выбор степени модели осуществляется в соответствии с принципом пошагового поиска с проверкой адекватности полученного уравнения.

Свойства смеси исследовались в заданных точках решетки симплекса, в которой вершины треугольника соответствуют чистым веществам, стороны — двойным смесям, точки внутри сим-

<table>
<thead>
<tr>
<th>№ опыта</th>
<th>Состав шихты, доли</th>
<th>Спекаемость</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0</td>
<td>72, (x_1)</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0</td>
<td>145, (y_2)</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1</td>
<td>55, (y_3)</td>
</tr>
<tr>
<td>4</td>
<td>1/2 1/2 0</td>
<td>118, (y_{12})</td>
</tr>
<tr>
<td>5</td>
<td>0 1/2 1/2</td>
<td>76, (y_{23})</td>
</tr>
<tr>
<td>6</td>
<td>1/2 0 1/2</td>
<td>21, (y_{13})</td>
</tr>
<tr>
<td>7</td>
<td>1/4 3/4 0</td>
<td>130, (y_{122})</td>
</tr>
<tr>
<td>8</td>
<td>3/4 1/4 0</td>
<td>81, (y_{112})</td>
</tr>
<tr>
<td>9</td>
<td>0 3/4 1/4</td>
<td>126, (y_{223})</td>
</tr>
<tr>
<td>10</td>
<td>0 1/4 3/4</td>
<td>19, (y_{233})</td>
</tr>
<tr>
<td>11</td>
<td>1/4 0 3/4</td>
<td>8, (y_{133})</td>
</tr>
<tr>
<td>12</td>
<td>3/4 0 1/4</td>
<td>37, (y_{113})</td>
</tr>
<tr>
<td>13</td>
<td>1/4 1/4 1/2</td>
<td>30, (y_{123})</td>
</tr>
<tr>
<td>14</td>
<td>1/4 1/2 1/4</td>
<td>96, (y_{122})</td>
</tr>
<tr>
<td>15</td>
<td>1/2 1/4 1/4</td>
<td>53, (y_{112})</td>
</tr>
<tr>
<td>16</td>
<td>0,37 0,20 0,43</td>
<td>32, (y_{122})</td>
</tr>
<tr>
<td>17</td>
<td>0,30 0,30 0,40</td>
<td>42,5, (y_{122})</td>
</tr>
</tbody>
</table>

Диаграмма
«состав угольной шихты – индекс всупечивания»
плекса — тройным смесем. Необходимое число опытов \(N \) рассчитывалось по формуле

\[
N = \frac{(n + q - 1)!}{n!q!(q - 1)!},
\]

где \(n \) — степень полинома, \(q \) — число компонентов смеси. При \(n = 4 \) и \(q = 3 \) \(N = 15 \).

Полином четвертого порядка для трехкомпонентной смеси имеет вид:

\[
y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \gamma_{12} x_1 x_2 (x_1 + x_2) + \gamma_{13} x_1 x_3 (x_1 + x_3) + \gamma_{23} x_2 x_3 (x_2 + x_3) + \delta_{12} x_1 (x_1 - x_2)^2 + \delta_{13} x_1 (x_1 - x_3)^2 + \delta_{23} x_2 (x_2 - x_3)^2 + \beta_{1234} x_1 x_2 x_3 x_4 + \beta_{1235} x_1 x_2 x_4^2 + \beta_{1236} x_1 x_3 x_4^2 + \beta_{1237} x_1 x_4 x_5^2 + \beta_{1238} x_2 x_3 x_4^2 + \beta_{1239} x_2 x_4 x_5^2 + \beta_{1240} x_3 x_4 x_5^2.
\]

На данном этапе эксперимента проводился поиск области с оптимальным составом шихты. С этой целью изучалась спекаемость шихты. Для их составления использовались кузнецкие угли: газо вые Оф им. Кирова (\(x_1 \)), жерновые Абашевской Оф (\(x_2 \)) и коксовые Анжерского шахтно-управления (\(x_3 \)). Спекаемость (индекс вскипания, Ив) определялась по методу ИГИ-ДМесИ [3].

Матрица планирования и результаты эксперимента представлены в таблице.

Далее проводился расчет коэффициентов уравнения регрессии на основе данных таблицы в соответствии с формулами VI.46 [1]. При этом получена математическая зависимость между спекаемостью \((y)\) и составом угольной шихты \((x_i):\)

\[
y = 72,0 x_1 + 145,0 x_2 + 5,5 x_3 + 38,0 x_1 x_2 + 2,0 x_1 x_3 - 72,0 x_1 x_2 x_3 - 66,6 x_1 x_2 (x_1 - x_2) + 200,0 x_1 x_2 (x_1 - x_2) - 21,3 x_1 x_2 (x_1 - x_2) - 216,0 x_1 x_2 (x_1 - x_2) - 64,0 x_1 x_2 (x_1 - x_2) - 584,0 x_1 x_2 (x_1 - x_2) - 581,3 x_1 x_2 x_3 - 909,3 x_1 x_2 x_3 - 909,3 x_1 x_2 x_3.
\]

Воспроизводимость эксперимента была проверена по критерию Кохрена.

Для проверки полученного уравнения регрессии на адекватность дополнительно были проведены два опыта с вариантами шихт 16, 17 (см. табл.).

Для данных точек с использованием уравнения регрессии определены также расчетные значения спекаемости:

\[
y_{16} = 72,0*0,37 + 145,0*0,20 + 5,5*0,43 + 38,0*0,37*0,20 + 2,0*0,20*0,43 = 72,0*0,37*0,43 - 66,6*0,37*0,20*0,037 - 0,20 + 200,0*0,20*0,43*(0,20 — 0,43) - 21,3*0,37*0,43*(0,37 — 0,43) - 216,0*0,37*0,20*(0,37 — 0,20); 72,0*0,20*0,43*(0,20 — 0,43); 64,0*0,37*0,43*(0,37 — 0,43) - 584,0*0,37*0,20*0,43 + 581,3*0,37*0,20*0,43 - 909,3*0,37*0,20*0,43 = 28,7 (мм); аналогично рассчитан \(y_{17} = 47,41 \) (мм).
\]

Адекватность уравнения регрессии, описывающего зависимость между составом шихты и ее спекаемостью, на основе анализа экспериментальных и расчетных результатов опытов №16 и 17 была подтверждена с помощью критерия Стьюдента.

Далее производился анализ геометрической поверхности симплекса. С этой целью была произведена компьютерный анализ уравнения регрессии, в результате которого была построена диаграмма «состав-свойство» (см. рис.).

Контурные изолинии на диаграмме соответствуют составам шихт, характеризующихся равной спекаемостью.

Поиск области с оптимальным составом угольной шихты можно осуществить на основе полученной диаграммы с учетом сырьевой базы коксования и технико-экономических показателей работы предприятия.

СПИСОК ЛИТЕРАТУРЫ

*Авторы статьи:

Прилепская Людмила Львовна – канд техн. наук, доц. каф. химии и технологии неорганических веществ КузГГУ, Тел. 8-3842-39-63-17,

Швед Виктор Семенович – канд техн. наук, начальник ЦЗЛ ОАО «Кокс», тел. 89617068864.*