1. В настоящее время, в связи с отсутствием действующих нормативных документов определяющих предельные соотношения потребления активной и реактивной мощности по каждой точке присоединения, потребовать убытков можно только в судебном порядке, согласно положениям Гражданского процессуального кодекса Российской Федерации.

2. В договоре оказания услуг по передаче электроэнергии следует указывать предельные значения соотношения активной и реактивной мощности по каждой точке присоединения, который потребитель будет обязан соблюдать, а также обеспечить установление органом исполнительной власти субъекта Российской Федерации тарифа на оказание услуг по компенсации реактивной мощности для потребителя.

3. Снижение потерь электрической энергии возможно за счет изменения режима работы трансформаторов: включение либо отключение одного трансформатора в режиме малых нагрузок в тех случаях, когда обеспечивается требуемый уровень надежности электроснабжения потребителей.

СПИСОК ЛИТЕРАТУРЫ

1. Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения), утв. Приказом М-ва промышленности и энергетики Рос. Федерации №49 от 22.02.2007 г.: ввод. в действие с 20.04.2007.

2. Правила определения стоимости электрической энергии (мощности), поставляемой на розничном рынке по регулируемым ценам (тарифам), оплаты отклонений фактических объемов потребления от договорных, а также возмещения расходов в связи с изменениями договорного объема потребления электрической энергии, утв. Приказом ФСТ Рос. Федерации №166-э/1 от 21.08.2007 г. (ред. от 03.07.2008 г.):ввод. в действие с 21.09.2007 г.

□ Автор статьи:
Храмцов Роман Анатольевич
- канд. техн. наук, ст. преп. каф. электроснабжения горных и промышленных предприятий КузГТУ
khramcov@rs.kuzbassenergo.ru

УДК 622.621.31-213.34:622.86
Г.И. Разгильдеев, В.М. Друй

МЕТОД РАСЧЕТА ДЛИТЕЛЬНОСТИ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ РУДНИЧНОГО ВЗРЫВОЗАЩИЩЕННОГО ЭЛЕКТРООБОРУДОВАНИЯ ДО ПРОВЕДЕНИЯ РЕВИЗИИ СРЕДСТВ ВЗРЫВОЗАЩИТЫ

В угольных шахтах, опасных по газу и пыли, основой электрификации производственных процессов служит рудничное взрывобезопасное электрооборудование (РВЭО).

В соответствии с ГОСТ Р 51330.0 взрывобезопасное электрооборудование - это взрывозащищенное электрооборудование, в котором взрывозащита обеспечивается как при нормальном режиме работы, так и при признанных вероятных повреждениях, определяемых условиями эксплуатации, кроме повреждений средств взрывозащиты. Из определения этого стандарта видно, что основным условием безопасного применения РВЭО является безопасное состояние средств взрывозащиты (СВЗ).

Для сохранения свойств безопасности РВЭО в процессе эксплуатации нормативными документами (НД) предусмотрено проведение технического обслуживания в виде осмотров с регламентированной периодичностью:
- лицами, работающими на машинах и механизмами и дежурными электрослесарями - ежемесячно;
- механизмом участка или его заместителем - ежедневно с занесением результатов в оперативный журнал участка;
- главным энергетиком (главным механиком) шахты или назначенным им лицом - не реже одного раза в три месяца с занесением результатов в «Книгу ретерации состояния электрооборудования и заземления»;
- специальной группой электрослесарей шахты под контролем главного энергетика (главного механика) шахты или лица, им назначенного, по графику, утвержденному техническим руководителем шахты [1].

Перед спуском в шахту электрооборудование (ЭО) должно подвергаться ревизии и проверке его
Таблица 1. Показатели надежности технологической функции (ТФ) ВЗЭО

<table>
<thead>
<tr>
<th>Наименование показателей</th>
<th>Обозначение и вид показателей</th>
<th>Характеризуемые свойства</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вероятность безотказной работы</td>
<td>$P(t)$ единичный</td>
<td>безотказность</td>
</tr>
<tr>
<td>Наработка на отказ</td>
<td>T_o, единичный</td>
<td>безотказность</td>
</tr>
<tr>
<td>Среднее время восстановления</td>
<td>$T_{оc}$, единичный</td>
<td>ремонтировидность</td>
</tr>
<tr>
<td>Интенсивность отказов (параметр потока отказов)</td>
<td>$\lambda(t)$, $[\text{о}/\text{ч}]$ единичные</td>
<td>безотказность</td>
</tr>
<tr>
<td>Вероятность простого</td>
<td>P_s, комплексный</td>
<td>работоспособность</td>
</tr>
<tr>
<td>Вероятность работоспособного состояния (коэффициент готовности)</td>
<td>$P_e (K_e)$, комплексный</td>
<td>работоспособность</td>
</tr>
</tbody>
</table>

взрывобезопасности в порядке, установленном Госгортехнадзором России и отраженным в «Инструкции по омоткам и ревизии взрывозащищенного электрооборудования» [2].

Опыт и выполненные исследования, в том числе НЦ ВостНИИ и в ГУ КузГТУ, свидетельствуют о том, что действующая система осмотров не исключает эксплуатации РВЭО с повреждениями СВЗ, то есть в опасном для окружающих взрывоопасной среде состояния.

Исследования, выполненные в 2006 - 2008 гг. ГУ КузГТУ на шахтах Кузбасса [3], показали, что повреждения СВЗ при эксплуатации РВЭО являются следствием нескольких причин, основными из которых являются:

- ошибочные или преднамеренные действия персонала при выполнении демонтажно-монтажных работ, при первичном монтаже и при переносе ЭО на новое место установки вслед за подвижанием горных работ;
- ошибочные или преднамеренные действия персонала при ремонтах в случае отказов ЭО в порядке текущей эксплуатации;
- коррозия (раковина) на взрывозащитных поверхностях РВЭО из-за отсутствия антикоррозийных покрытий и низкой эффективности применимых средств ее предотвращения.

Из числа приведенных выше периодических осмотров выявляют повреждения СВЗ, вызванные ошибочными или преднамеренными действиями персонала, можно при еженедельных осмотрах механизмом участка или его заместителем при условии вскрытия оболочек и кабельных вводов ЭО, которое оказалось под воздействием оперативного или оперативно-ремонтного персонала, то есть ЭО, оболочки или кабельные вводы которого этот персонал вскрывал по разным причинам.

Если механик участка или его заместитель не смогли по каким-то причинам выявить поврежденные СВЗ, то ЭО будет эксплуатироваться в опасном состоянии либо до новой проверки через неделю, либо до ревизии, которую проводят либо один раз в три месяца, либо по графику.

Повреждения СВЗ в силу медленных коррозионных процессов могут быть выявлены при централизованных ревизиях РВЭО.

Таким образом, действующая периодичность осмотров РВЭО с целью проверки исправности СВЗ не привязана к воздействиям, вызванным подвижным характером горных работ и объективными процессами, приводящими к отказам ЭО, и требует корректировки. Это позволит повысить уровень его безопасной эксплуатации.

В настоящее время методов расчета периодичности проведения осмотров и ревизий РВЭО нет.

Методика их получения и применения хорошо отработана и не представляет трудностей [4].

Функция безопасности (ФБ) отказами признаками не обладает и поэтому требует для количественной оценки иного подхода.

С помощью этих показателей можно оценить безопасные свойства любого взрывозащищенного электрооборудования или безопасность их применения.

Вероятности исправного состояния $R_{исп}$ средств взрывозащиты (СВЗ) и опасного состояния $R_{исп}$ для любого вида РВЭО могут быть получены расчетным путем, если известны вероятности повреждений СВЗ каждого вида. Определяются они путем статистической обработки результатов ревизий РВЭО [5].

Вероятность повреждения одного вида СВЗ при монтажных и демонтажно-монтажных работах P_{im} также может быть получена расчетным путем.

Среднее время восстановления исправного состояния СВЗ $T_{оc}$ (среднее время ремонта) можно получить статистическим путем для каждого вида СВЗ на ремонтных предприятиях.
<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Обозначение</th>
<th>Характеризуемое свойство</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вероятность опасного состояния</td>
<td>(R_{uc}) комплексный</td>
<td>Опасное для эксплуатации состояние</td>
</tr>
<tr>
<td>Вероятность исправного состояния</td>
<td>(R_{sc}) комплексный</td>
<td>Безопасное (исправное) состояние</td>
</tr>
<tr>
<td>Вероятность повреждения СОБП (СВЗ) (вероятность нарушения БФ)</td>
<td>(T_{os}) единичный</td>
<td>Событие, состоящее в повреждении СОБП (нарушение БФ)</td>
</tr>
<tr>
<td>Среднее время восстановления исправного состояния СВЗ</td>
<td>(T_{os}) единичный</td>
<td>Ремонтнопригодность РВЭО и СВЗ</td>
</tr>
<tr>
<td>Вероятность восстановления исправного состояния СВЗ</td>
<td>(G_r) единичный</td>
<td>Ремонтнопригодность СОБП, квалификация персонала и качество выполняемой им работы при ТО РВЭО</td>
</tr>
<tr>
<td>Длительность пребывания РВЭО с неисправным средством взрывозащиты</td>
<td>(T_{oc}) единичный</td>
<td>Ремонтнопригодность СОБП, квалификация персонала и качество выполняемой им работы при ТО РВЭО</td>
</tr>
</tbody>
</table>

*СОБП - средство обеспечения безопасного применения РВЭО или СВЗ - средство взрывозащиты.

Повреждение даже одной единицы СВЗ РВЭО переводит его в опасное состояние. Зная вероятность повреждения каждого вида СВЗ для различного РВЭО, по теореме умножения вероятностей можно определить вероятность исправного и неисправного состояния вида электрооборудования в целом.

Состояние СВЗ РВЭО может быть оценено при экспертизе промышленной безопасности, когда требуется заключение о возможности продления срока безопасной эксплуатации [6]. При этом вероятностными методами может быть оценено время его безопасной эксплуатации \(T_{os} \).

Для вывода аналитической зависимости \(T_{os} \) и его количественного определения введем следующие обозначения критериев обследования РВЭО:

- \(P_o \) - вероятность, что РВЭО (объект обследования), признанный по результатам обследования исправным, действительно исправен (не имеет поврежденных СВЗ) т.e. это вероятность правильного диагностирования исправного состояния;

- \(P_b \) - вероятность исправного состояния РВЭО непосредственно в процессе эксплуатации.

Тогда вероятность исправного состояния (по теореме умножения вероятностей независимых событий) равна:

Введем допущение о том, что в процессе эксплуатации повреждения СВЗ возможны, как указано ранее:

- при переносах РВЭО на новое место установки (производится демонтажно-монтажные работы со вскрытием взрывонепроницаемых оболочек или их частей) за счет ошибочных или предназначенных действий ремонтного персонала;

- при восстановлении работоспособности отказавшего РВЭО в порядке текущей эксплуатации, когда при отказах вскрываются взрывонепроницаемые оболочки и повреждения СВЗ возможны также за счет ошибочных или предназначенных действий персонала. Обозначим через \(\lambda_1 \) и \(\lambda_2 \) потоки указанных выше воздействий (потоки повреждений СВЗ), получим вероятность исправного состояния РВЭО в процессе эксплуатации (при экспоненциальном законе распределения наработок на повреждение СВЗ):

\[
P_o(t) = \exp\left(-\left(\lambda_1 + \lambda_2\right) t\right)
\]

После подстановки (2) в (1) получаем

\[
P_b = P_o \exp\left(-\left(\lambda_1 + \lambda_2\right) t\right)
\]

С помощью соотношения (3) можно получить среднее время исправной работы РВЭО (среднее время эксплуатации без повреждений СВЗ), то есть прогнозируемое время \(T_{os} \) работы без повреждений СВЗ:

\[
T_{os} = \int_0^t P_o(t) - P_b(t) dt = \frac{P_o}{\lambda_1 + \lambda_2} - e^{-\left(\lambda_1 + \lambda_2\right) t}
\]

где \(t \) - ожидаемое время эксплуатации объекта (РВЭО).

Если заключение экспертизы о безопасной эксплуатации РВЭО выдается сроком на три года, то \(t \) равно утроенному количеству часов в год 3·8760 = 26280 час.

Статистические значения \(\lambda_1 \) и \(\lambda_2 \) для различного РВЭО приведены в [3]. Для магнитных пускателей конвертеров они равны соответственно: 0.765·10⁻⁴ и 0.0765·10⁻⁴. Подставляя значения \(\lambda_1 \) и \(\lambda_2 \) в (4) при \(t = 26280 \) получим \(T_{os} = 10600P_{uc} \).

Метод определения вероятности исправного состояния СВЗ магнитного пускателя \(P_{uc} \) и его расчет показаны в [5].

Значение ее равно \(R_{uc} = P_{uc} = 0.65 \) и прогнозируемое время безопасной эксплуатации магнитного пускателя составит \(T_{os} = 10600·0.65 = 6890 \).

Выводы

1. При планировании осмотров РВЭО с целью контроля исправного состояния его СВЗ целесообразно исходить из факта действий ремонтного и оперативно-ремонтного персонала, вызванных переносной ЭО на новое место установки или ремонтом в случае отказов в порядке текущей эксплуатации.
2. Периодичность осмотров по графикам, утвержденным техническим руководителем шахты, может быть рассчитана по прилагаемой методике.

СПИСОК ЛИТЕРАТУРЫ

Аutors статьи:

Разгильдеев Геннадий Иннокентьевич
Друй Владислав Михайлович
- докт. техн. наук, проф. каф. электроприборов КузГТУ, тел. 3842-58-07-16
- ст. преп. каф. электроснабжения промышленных предприятий КузГТУ, тел. 3842-58-07-16

УДК 622.6 – 83
В.М. Завьялов, А.П. Носков, В.С. Городнянский, А.Н. Гаргаев

СИСТЕМА МОНИТОРИНГА ДИНАМИЧЕСКОГО СОСТОЯНИЯ ЭЛЕКТРОПРИВОДОВ КАРЬЕРНЫХ ЭКСКАВАТОРОВ

На сегодняшний день, как на отечественных, так и на зарубежных разрезах, большинство скольких и полускальных пород разрабатываются одноковшовыми экскаваторами-мехионатами с предварительной буровзрывной подготовкой масива к выемке.

Электрооборудование одноковшовых экскаваторов работает в сложных природно-климатических и эксплуатационных условиях. Основной особенностью рабочего режима меха-

![Diagram](image_url)

Рис. 1. Структурная схема системы мониторинга состояния электроприводов