Суспензионное топливо на основе угля (угольных шламов) — это механическая смесь горючих, а в ряде случаев и негорючих веществ, обладающих новыми технологическими свойствами. К суспензионному топливу относятся композиции, в которых взвешены в жидкой среде тонкозмельчённые (менее 0,1 мм) частицы твёрдого вещества.

В монографии [1], которая является первой в мировой литературе, собран материал, опубликованный в иностранной и советской печати по вопросу топливных суспензий. История применения топливных суспензий за рубежом берёт своё начало с 1867-1870 гг. когда проводились опыты по изготовлению угольных суспензий, где в качестве жидкой фазы использовалось креозотное масло.

В России первый попытка приготовления угольной суспензии относится к 1913 г. когда изобретатель «колонненной мельницы» инж. Плаусон, работавший в Петербурге, использовал мельницу для приготовления угольной суспензии. Учитывая, что угольные частицы были получены диаметром 5-20 мкм, то осадок не образовывался в течение продолжительного времени, как так называемого класса углей, приближавшись к коллоидным. Но для приготовления топливных суспензий, коллоидные частицы не нашли применения из-за большого расхода энергии, затрачиваемой на их работу.

К концу первой мировой войны возник интерес к изготовлению суспензий в связи с нефтяным дефицитом, однако применение суспензии не получило развития, так как тонкозмельчённое топливо из-за низкой калорийности занимало на судах значительный объём, а измельчение топлива на самих судах представляло большие неудобства.

В Энергетическом институте Академии Наук СССР под руководством доктора технических наук, профессора В.Ф. Кустова с 1934 г. проводятся систематические исследования свойств углемазутных смесей и технико-экономические обоснования использования их в промышленности и на транспорте. В 1937 г. проведены опыты приготовления и сжигания таких смесей в мартеновской печи завода «Серп и молот» (Москва). В 1940 г. опытное сжигание суспензий на судне «Марат».

В СССР первые работы в области гидротранспорта кускового угля относятся к 40-м годам двадцатого столетия [2], однако, систематические исследования по созданию водоугольных суспензий (ВУС) проводились в 50-е годы [3-5]. Промышленное применение технологии ВУС получила в начале 60-х годов. Процесс развития технологии ВУС можно условно разбить на три этапа:

I этап — начало 60-х — начало 70-х годов;
II этап — середина 70-х — начало 80-х годов;
III этап — середина 80-х — конец XX столетия.

Первый этап развития технологии ВУС характеризуется обострением проблемы утилизации тонких угольных шламов, возникающих в больших количествах при гидравлической добыче и гидротранспорте угля, а также, при широком распространении обогащения углей мощным спосо

В Кузбассе в этом время были построены Беловские, Березовско-Вириловские и Кузнецкая ЦОФ, гидрошахты «Инская», «Заречная», «Красногорская» с обезвоживающими комплексами и др.

При механическом обезвоживании углей, а также при гидроподаче и гидротранспорте углей образуются высокообводненные мелкие классы углей — шламы, наиболее крупные из которых (более 0,05 (0,5) мм) улавливаются и выдаются вместе с крупными классами углей. Тонкодисперсные частицы (менее 0,05 (0,5) мм) улавливаются менее эффективно, а часто практически не улавливаются при сгущении и обезвоживании и сбрасываются в наружные шламовые отстойники, в которых происходит накопление шламов. Количество сбросов составляет в зависимости от производительности фабрики от 130 до 350 тыс. тонн в год при средней зольности угля в них от 26 до 60 %.

В результате за период эксплуатации фабрик и гидрошахт в Кузбассе общее количество накопленных шламов составило более 25 млн. т. Из них 12,7 млн. т имеют зольность менее 35% и могут быть использованы как дополнительные ресурсы для получения угля [6].

В этот период научно-исследовательские институты: ИПИ, ВНИИГидроуголь, КузНИИУглебогащение (в настоящее время: ОАО «СибНИИ-Углебогащение»), УкрНИИГидроуголь, производственные предприятия комбината Кузбассуголь и другие организации проводят исследования по проблеме утилизации обводненных шламов путём их сжигания в виде ВУС. Одновременно получают развитие работы, в которых исследуются теория горения, изучаются свойства и влияние на эффективность горения, появляются первые экспериментальные и полупромышленные установки по приготовлению и сжиганию ВУС.

Наиболее существенный вклад в развитие теории горения ВУС и исследование их свойств в этот период внесли фундаментальные работы Дер
лягина Г.Н., Иванова В.М. и Канторович Б.В. [4, 7-13], которые получили дальнейшее развитие в трудах их учеников: Давыдовой И.В. [14, 15], Онышенко А.Г. [16, 17], Исаева В.В. [18-21], Бутылковой Т.Н. [22, 23] и др.

Однако широкого промышленного внедрения технологии ВУС в нашей стране в то время не получила, и работы в этой области были практическим прекращены. Это можно связать со следующими обстоятельствами:
- разведанные в то время большие запасы нефти, а затем и природного газа придавали уверенность в их неисчерпаемости, и роль угля в энергетике стала снижаться;
- недостаточная изученность многих технических проблем, таких как: получение стабильных суспензий с высокой массовой долей твердой фазы, отсутствие эффективных топочных процессов сжигания ВУС без подсветки другим высококоррекционным топливом, отсутствие надёжных греелочных устройств с форсунками эффективного тонкого распыления ВУС, недостаточная надежность и существующие недостаточные технические характеристики насосного оборудования, отсутствие надежной запорной арматуры, специальных приборов КИП и А и др.

За рубежом наиболее значительные результаты работ по приготовлению, гидротранспорту и сжиганию ВУС в этот период нашли отражение в работах ученых Шварц О. и Мертен Г. [24], Тайдзона И. и Сутиэро С. [25] и др.

В США исследовательские работы по созданию методов использования высокообводнённого топлива для энергетических целей также были начаты в середине 50-х годов. В 1957 г. был введен в действие первый в мире магистральный углепровод протяжённостью 173 км для гидротранспорта 1,25 млн. т угля в год из Кадис на электростанцию «Ист-Лэйк» [26].

Эксплуатация углепровода подтвердила возможность надежного и экономически выгодного гидротранспорта угля. Ввод его в эксплуатацию вызвал обострение конкуренции со стороны железных дорог, которые снизили железнодорожные тарифы на перевозку угля с 1958 по 1964 гг. в 1,75 раза. В результате углепровод не выдержал конкуренции и был законсервирован. Однако накопленный опыт позволил спроектировать и в 1971 г. ввести в эксплуатацию новый магистральный углепровод «Блэк Меса» протяженностью 420 км и производительностью 3,3 млн. т в год от шахт «Блэк Меса» до электростанции «Мохейв» в штате Невада [26].

Особенностью технологии, применённой в этих гидротранспортных топливно-энергетических комплексах (ГТЭК), является гидротранспортирование угля по трубопроводу в турбулентном режиме. Крупность угля в гидросмеси составляет 0-1(3) мм, а содержание твёрдой фазы 45-50 % по массе. В результате на электро-
дунородные корпорации, как Carbogel и Fluidcarbon (Швеция). В результате за рубежом были созданы и проверены в промышленных условиях разнообразные технологии приготовления высоко-
концентрированных ВУС, в т.ч. из низкозоль-
ных углей: CO-AL (США), Densecoal (ФРГ), Reo-
carb (Италия), Carbogel и Fluidcarbon (Швеция) [31-35]. Указанные технологии предназначены для получения высоко концентрированных ВУС (с массовой долей твердой фазы 65-75 %) из углей с зольностью 2-5 %.

В нашей стране возобновление работ по тех-
нологии ВУС в этот период было вызвано реше-
нием правительства развивать магистральный гидротранспорт углей. В соответствии с этим решением была разработана программа ра-
бот по созданию крупного ГТЭК - опыто-
промышленного трубопровода для гидротранс-
порта углей из Беловского угольного района Куз-
басса на одну из ТЭЦ г. Новосибирска, как перво-
го этапа магистрального гидротранспорта углей из Кузбасса на Урал и в Европейскую часть страны. При разработке технико-экономического обосно-
вания (ТЭО) и технического проекта была обосно-
вана и выбран вариант строительства опытно-
промышленного трубопровода для гидротранс-
порта углей от шахты «Низкая» в г. Белоо до ТЭЦ-5 в г. Новосибирске [36].

В качестве прототипа технологии была принята технологическая схема ГТЭК «Близ Меса». В соответствии с принятой схемой предполагалось осуществлять гидротранспорт угля кл. 0-1(3) мм с массовой долей твердой фазы 50 %. Протяженность трубопровода 262 км, диаметр трубы - 400
мм. На ТЭЦ-5 предусматривалось строительство обезвоживающей фабрики для обезвоживания угля, осветления и очистки технологической воды. Сжигание угля в котлах ТЭЦ предполагалось в пылевидном состоянии. Утилизация фугата обез-
воживающих центрифуг предусматривалось про-
изводить в виде ВУС с массовой долей твердой
фазы 33 %.

Однако строительство опытно-
промышленного трубопровода с технологий гид-
ротранспорта угля кл. 0-1(3) мм, предусматри-
вающей на конечном терминале операции обезво-
живания угля и осветления технологической воды, не было осуществлено в связи с тем, что в 1983 г. Правительством СССР было принято решение вместо разработанной в техническом проекте тех-
нологии предусмотреть применение новой техно-
логии гидротранспортирования угля в виде высо-
коконцентрированной ВУС - готового водоуголь-
ного топлива, позволяющего на ТЭЦ производить прямое его сжигание в топках котлов, исключая при этом операции обезвоживания и осветления технологии-ческой воды.

Такое решение правительства было вызвано в первую очередь тем, что к этому времени во мно-
гих странах мира возник наибольший интерес к
ВУС, тем более что развитие технологий их при-
готовления и гидротранспорта достигло уровня промышленного применения.

Начался следующий этап развития технологии приготовления и применения нового топлива из угля - водоугольного топлива в нашей стране. Для реализации принятого постановления была разра-
ботана программа научно-исследовательских и проекто-конструкторских работ. В соответствии с этой программой к работе было привлечено большое количество академических, отраслевых научно-исследовательских и учебных институтов, промышленных и других предприятий и органи-
заций СССР: ВНИИГИГРОТУБУЗРОБОТ (в на-
стоящее время: ИПО «Гидротрубопровод»), ВНИИГИГРОТУБУЗРОБОТ, ИГИ, ИФХ АН СССР, ИКХ и
ХВ АН УССР, ВНИИПАВ, УралВТИ, ПО «Гид-
роуголь» и др. Исследовательские работы по соз-
данню и применению ВУТ были включены в Го-
сударственную научно-техническую программу
Миннауки России «Экологически чистая энерге-
tика» [37].

Продолжающийся современный этап развития техники получения и использования суперзольного угольного топлива (СУТ) характеризуется повышенным интересом к этой теме, признаком которого является большое число опубликован-
ных работ.

Значительный вклад в решение проблемы созда-
ния перспективного вида топлива внёс ЗАО
ИПП «Сибэкохимия». Фундаментальные работы
В.И. Мурко [38], а также, учеников: Б.В. Юдина
[39], Ю.А. Сенчуровой [40] и др. находят практи-
ческое применение.

В настоящее время экологически чистая техно-
логия комплексной утилизации угольных шла-
мов и отходов флотации углеобогатительных фабрик наиболее реальна методом сжигания суспен-
зизного топлива.

Существующие технологии добычи и перера-
ботки угля характеризуются большим выходом тонкодисперсных (<0,5(3,0) мм) угольных шламов (например, при гидравлической добыче угля до 30,0 % от ря домого угля, а при мокром обогаще-
нии до 10,0 % от перерабатываемого угля), что предопределяет значительные объёмы гидроотвалов, а, следовательно, потерять добываемого угля и эколо-
гическое загрязнение природной среды.

Известные технологии утилизации углеотхо-
дов имеют ограниченное применение в виду того, что тепловые установки, на которых сжигаются (утилизируются углеотходы), требуют значитель-
ных средств для их переоборудования, обуслов-
ленных высоким содержанием золы в отходах и необходимостью установки громоздкого оборудо-
вания для её улавливания. Следовательно, возни-
кает задача снижения зольности угольного шлама с дальнейшим получением из него высококачест-
венного суперзольного топлива.

Рациональная технология утилизации шламов
Таблица. Характеристика работы установки и содержание вредных веществ в отходящих газах при сжи- гании образцов СУТ из различных углей и шламов

<table>
<thead>
<tr>
<th>Наименование показателя</th>
<th>Результаты сжигания партий СУТ, мг/м³, приготовленного на основе:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Уголь марки Д (Кузбасс)</td>
</tr>
<tr>
<td></td>
<td>Шламы марки ССш (Кузбасс)</td>
</tr>
<tr>
<td></td>
<td>Шлам ш. «Заречная» (Кузбасс)</td>
</tr>
<tr>
<td></td>
<td>Шлам ЦОФ «Абашевская» (Кузбасс)</td>
</tr>
<tr>
<td>Массовая доля твердой фазы, %</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>64,5</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>62,5</td>
</tr>
<tr>
<td>Низшая теплота сгора- ния, ккал/кг</td>
<td>4580</td>
</tr>
<tr>
<td></td>
<td>3865</td>
</tr>
<tr>
<td></td>
<td>3150</td>
</tr>
<tr>
<td></td>
<td>2916</td>
</tr>
<tr>
<td>Вязкость (при скорости сдвига 81 с⁻¹), мПа·с</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>355</td>
</tr>
<tr>
<td></td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>380</td>
</tr>
<tr>
<td>Расход СУТ, л/ч</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Давление ВУТ, атм</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td>Температура в топке, °C</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>950</td>
</tr>
<tr>
<td>CO*, мг/м³</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>165</td>
</tr>
<tr>
<td>NOₓ*, мг/м³</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>245</td>
</tr>
<tr>
<td>SO₂*, мг/м³</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

*Нормативные значения: CO – не более 375 мг/м³, NOₓ – не более 750 мг/м³, SO₂ – не более 750 мг/м³ (ГОСТ 28193-89).

с последующим переводом их в транспортабельное и технологически приемлемое суспензионное топливо (конкурентоспособное на современном рынке топлива) позволяет не только улучшить экологическую обстановку в регионе, но и получить существенный экономический эффект, в том числе и ресурсосберегающий.

В связи с этим является актуальным разработка комплексной технологии переработки угольных шламов на базе научно обоснованных физических и физико-химических процессах воздействия на исходное сырье с целью получения экологически чистого суспензионного угольного топлива (СУТ) с низкой зольностью, как альтернативу дорогостоящим и дефицитным жидким и газообразным видам топлива в малой и большой энергетике [41-43].

Процесс глубокого обогащения угольных шламов наиболее эффективно осуществляется методом машильной грануляции [44, 45]. Выход угольной составляющей в концентрат 80-85 %. Зольность отходов составляла A₄⅓=75-80 %. При этом создаются условия для утилизации минеральной части отходов в качестве компонента строительного материала.

Следует отметить, что в значении выхода и зольности агломерированного концентрат включено содержание связующего, так как основная часть связующего остаётся в гранулированном продукте и повышает его калорийность. Полученные концентраты использовались для приготовления суспензиионного топлива (таблица), которое прошло испытание на стендовой демонстрационной установке, оснащённой специальным оборудованием для приготовления, хранения, транспортировке суспензии и её сжигания [46].

Заключение. Круг работ по обогащению углей методом машильной агломерации достаточно узок. Между тем, использование метода машильной агломерации в практике имеет большие перспективы. Именно потребности современной технологии подготовки СУТ диктуют необходимость дальнейшего развития теоретических и экспериментальных работ по определению закономерностей различных технологических марок углей подвергаться глубокой деминерализации, знание которых необходимо для оптимизации процесса получения СУТ.

Полученный и испытанный новый вид суспензионного топлива из угольных шламов, обогащённых методом машильной агломерацией, должен рассматриваться как наиболее перспективный с точки зрения экономики и защиты окружающей природной среды.

СПИСОК ЛИТЕРАТУРЫ

4. Делягин, Г.Н. Обводненное твердое топливо-энергетическое топливо / Г.Н. Делягин, Б.В. Кант-


17. Огищенко, А.Г. Исследование горения и теплообмена при сжигании водоугольных суспензий в топки парового котла для промэнергетики: Автореф. дис. ...канд. техн. наук. М., 1969. 25 с.


21. Исаев, В.В. Разработка и исследование процесса термической переработки обводненных отходов обогащения: Автореф. дис. ...канд. техн. наук. М., 1972. 32 с.


27. Schwarz, O. Verbrennung von Steinkohle und Kohle - Wasser - Suspension in Wasserrohrkesseln //


37. Мурко, В.И. Научные основы процессов получения и эффективного применения водоугольных суспензий: Дис. ... д-ра техн. наук. М.: ИГИ, 1999. 237 с.


42. Мурко, В.И. Выбор углей для приготовления водоугольных суспензий и закономерности формирования их структурно-реологических характеристик / В.И. Мурко, А.Н. Заостровский А.Н // Вестн. КузГТУ. 2001. № 5. С. 49-54.

43. Патент № 2268289 РФ, МПК С10Л 1/32. «Способ получения композиционного водоугольного топлива» / ЗАО «НПП «Сибкотехника»; В.И. Мурко, В.И. Федяев, Д.А. Дзюба, А.Н. Заостровский, Т.А. Папина, М.С. Клейя; опубл. 20.07.2006. Бюл. № 02.

44. Патент № 2277120 РФ, МПК С10Л 1/32. «Способ получения водоугольного топлива и его состав» / ГОУ ВПО Томский политехнический университет; В.П. Топанов, Г.А. Солодов, А.Н. Заостровский, А.В. Папин, С.А. Бабенко, О.К. Семакин; опубл. 27.05.2006. Бюл. № 15.


АВтор статьи: Заостровский Анатолий Николаевич - канд. техн. наук, ст. науч. сотр. Института угля и углеводородов СО РАН, доц. кафедры химической технологии твёрдого топлива и экологии КузГТУ Email: catalys01@rambler.ru