ЭЛЕКТРОТЕХНИКА

УДК 622.822.2: 622.271: 519.6

ВОССТАНОВЛЕНИЕ ФОРМЫ СЕЧЕНИЯ ЦИЛИНДРИЧЕСКОГО ИСТОЧНИКА ТОКА КАК РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ ГЕОЭЛЕКТРИКИ

RESTORE THE SHAPE OF THE CROSS SECTION OF THE CYLINDRICAL CURRENT SOURCE AS THE SOLUTION OF THE INVERSE PROBLEM OF GEOELECTRICS

Сирота Дмитрий Юрьевич,
кандидат техн. наук, доцент, e-mail: dmsirota@yandex.ru
Dmitriy Yu. Sirota, C. Sc. (Engineering), Associate Professor

Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000, Россия, г. Кемерово, ул. Весенняя, 28
T.F. Gorbachev Kuzbass State Technical University, 28 street Vesennyaya, Kemerovo, 650000, Russian Federation

Аннотация
Актуальность работы. Одной из многочисленных целей интерпретации геофизических данных является восстановление формы источника естественного (электрического, теплового, магнитного, гравитационного) поля участка земли. Как известно, эта задача может быть сведена к решению интегрального уравнения Урысона 1-го рода. В отличие от линейных (фредгольмовских) интегральных уравнений 1-го рода (на основе метода регуляризации А.Н. Тихонова) в настоящее время пока что не существует завершённой теории решения такого сорта уравнений. Поэтому рассмотрение различных численных вариантов и попыток применения метода А.Н. Тихонова к таким интегральным уравнениям несомненно является интересным и актуальным.

Цель работы. Разработка численного алгоритма и его программной реализации для решения обратной задачи восстановления формы сечения цилиндрического источника электрического поля по измеренным значениям потенциала на дневной поверхности.

Методы исследования. Методы математической физики – для формулировки задачи восстановления формы источника, как некорректной задачи решения интегрального уравнения 1-го рода.

Методы математического программирования – для формирования численной расчётной схемы приближённого последовательного восстановления формы источника поля.

Результаты. Произведён расчёт величины потенциала электрического поля, погребённого в тестовой области цилиндрической формы с эллиптическим сечением, расположенным в трёхслойной среде. Используя полученные значения, решена обратная некорректная задача восстановления формы сечения источника электрического поля как решение интегрального уравнения Фредгольма – Урысона 1-го рода. Проведён сравнительный анализ формы и результатов расчёта прямой задачи от точно заданной и приближённо найденной области.

Abstract
The urgency of the discussed issue. One of the many purposes of the interpretation of geophysical data is the recovery of the natural source (electrical, thermal, magnetic, gravitational) fields of land. As is known, this problem can be reduced to solution of integral equations of Uryson 1-St kind. Unlike linear (Fredholmian) integral equations of the 1st kind (based on the method of regularization A. N. Tikhonov) at present there is no complete theory for solving this kind of equations. Therefore, a review of various numerical options and attempts of application of the method A. N. Tikhonov such integral equations is undoubtedly interesting and relevant.

The main aim of study. Development of numerical algorithm and its software implementation to solve the inverse problem of restoring the shape of the cross section of the cylindrical source of the electric field on the measured values of the potential on the surface.

The methods used in the study. Methods of mathematical physics for the formulation of the problem of restoring the shape of the source as ill-posed problems solutions of integral equations of the 1st kind.

Methods of mathematical programming – to generate the numerical calculation scheme of approximate se-
Введение. Определение формы и размеров источников полей различной природы (электрической, гравитационной, тепловой, магнитной или другой) является актуальной для задач сейсмики, электро-, магнито- и гравиразведки [1 – 3]. С точки зрения прикладной математики все эти задачи являются обратными и некорректными [4 – 7]. Большинство существующих теоретических методов и численных алгоритмов посвящены в основном решению линейных обратных задач, то есть таких, где неизвестная функция является сомножителем какого-то известного выражения, характеризующего среду [8 – 13]. Разработке и тестированию алгоритмов решения невлинейных обратных задач посвящено гораздо меньше работ [14, 15].

Как известно задача по определению формы источника поля сводится к решению интегрального уравнения Фредгольма – Урьсона первого рода [15, 16]. В работах [17, 18] автором рассматривалась более простая задача восстановления формы и угла наклона плоского источника. В предложёное статье рассматривается более сложная в смысле вычислений задача определения сечения конечного гильзона. Отметим, что подобная задача рассматривалась в работе [19 и др.], где происходило восстановление сечения бесконечного цилиндра.

1. Постановка и решение прямой задачи.

Пусть электрическое поле естественной природы (ЕЭП) порождается горизонтальным цилиндрическим источником тока с произвольным, но постоянным сечением.

Рис 1. Схема вмещающего пространства и цилиндрического источника поля.

Пусть также известна длина этого источника и глубина захоронения в нижнем слое двухслойного однородного изотропного пространства с плоско-параллельными границами. (рис. 1).

В этом случае потенциал точечного источника будет определяться известной формулой [20, 21]

\[ u_M = \frac{C}{\sqrt{x_M^2 + y_M^2 + z_M^2}} \]  

(1)

где \( C \) – коэффициент, характеризующий силу электрического тока источника; \( M \) – точка измерения потенциала поля на земной поверхности.

Для получения расчётной формулы величины потенциала цилиндра проницаемому выражение (1) по объёму цилиндра \( V_P \):

\[ U_M = C \int_{V_P} \frac{dV_p}{r_p \left[ (x_p - x_M)^2 + (y_p - y_M)^2 + (z_p - z_M)^2 \right]^{\frac{3}{2}}} \]  

(2)

где \( P \) – точка, расположенная в объёме цилиндра.

Перейдём в интеграл (2) к безразмерным переменным по общей формуле \( \tilde{w} = \frac{w}{w} \), где под \( w \) подразумеваются координаты точки измерения поля \( M \) и переменные интегрирования цилиндра \( P \). Тогда (2) примет вид

\[ U_M = C \cdot z_M^2 \cdot \int_{V_p} \frac{dV_p}{r_p \left[ (\tilde{x}_p - \tilde{x}_M)^2 + (\tilde{y}_p - \tilde{y}_M)^2 + (\tilde{z}_p - 1)^2 \right]^{\frac{3}{2}}} \]  

(3)

Далее для упрощения вида формулу горизонтальную точку у безразмерных величин писать не будем. Проницаемому (3) по интервалу \( y_p \in [-H; H] \):

\[ U_M = \int_{-H}^{H} \left[ \int_{-H}^{H} \frac{dy_p}{\left( (y_p - y_M)^2 + D \right)^{\frac{3}{2}}} \right] dS_p = \]  

(4)

\[ = \int_{-H}^{H} F(M, P) dS_p, \]
где \( F(M, P) = \ln(Q_1) - \ln(Q_2) \),
\[
Q_1 = H - y_M + \sqrt{(H - y_M)^2 + D},
\]
\[
Q_2 = -H - y_M + \sqrt{(H + y_M)^2 + D},
\]
\[
D = |x_p - x_M|^2 + (z_p - 1)^2.
\]

Для вычисления двойного интеграла определим границу области в виде функции \( \rho(\phi) \) в полярной системе координат. Переход к последней производится стандартным способом: \( x_p = r\cos\phi, \ y_p = r\sin\phi, \) где \( \phi \in [0; 2\pi] \) и \( r \in [0; \rho(\phi)] \), где \( \rho(\phi) \) – периодическая функция.

Тогда (4) примет вид
\[
U_M = \int_0^{2\pi} \int_0^{\rho(\phi)} F(M, \phi, r) \cdot r \, dr \, d\phi.
\]

Таким образом, задача определения формы источника поля по измерениям потенциала на дневной поверхности свелась к интегральному уравнению Фредгольма – Урсона 1-го рода (далее ИУ) относительно неизвестной функции \( \rho(\phi) \):
\[
\int_0^{2\pi} R(M, \phi, r) \, d\phi = U^*,
\]
где \( R = \int_0^{\rho(\phi)} F(M, \phi, r) \cdot r \, dr \) – ядро нелинейного вида; \( U^* \) – измеренные на дневной поверхности значения потенциала ЭЭП.

Формула (5) позволяет вычислить величину потенциала ЭЭП цилиндра в любой точке на поверхности земли. Далее для решения обратной задачи восстановления формы сечения цилиндра будем использовать только центральную ось симметрии \( y_M = 0 \).

2. Решение обратной задачи.

Для определения функции \( \rho(\phi) \) рассмотрим задачу поиска минимума регулированного функционала А. Н. Тихонова [8, 14].

\[
\Phi(\rho) = W(x_M, \rho) + \alpha \cdot \Omega(\rho) =
\]
\[
= \int_c^d A(x_M, \rho) - U^*(x_M) \, dx_M + \alpha \cdot \Omega(\rho) \to \min
\]
где \( A(x_M, \rho) = \int_0^{2\pi} R(x_M, \rho) \, d\phi \) – нелинейный интегральный оператор прямого моделирования (4); \( \Omega(\rho) = \int_0^{2\pi} \left[ p^2 + \left( \rho' \right)^2 \right] d\phi \) – стабилизирующий функционал 2-го порядка; \( U^*(x_M) \) – правая часть ИУ, которая на практике задаётся экспериментально, а для тестовых задач определяется путём решения прямой задачи по формулам (4) с добавлением случайной поправки, моделирующей по грешности натурных измерений; \( \alpha \) – параметр регуляризации.

Минимум функционала (6) будем искать методом сопряжённых градиентов [22, 23], общая итерационная схема которого имеет вид
\[
\rho^{(q+1)} = \rho^{(q)} + k^{(q)} \cdot I^{(q)},
\]
где \( I^{(q)} = -\Phi'_\rho + \gamma^{(q)} \cdot I^{(q-1)} \), \( k \) – шаг минимизации; \( \gamma^{(q)} \) – линейная комбинация производных (градиентов) на предыдущих шагах; коэффициент \( \gamma^{(q)} \) определяется по одной из формул [22], \( \Phi'_\rho \) – производная Фреше функционала (6).

Рассмотрим некоторые аспекты численной реализации формул (5 – 7).

Подынтегральное выражение ядра \( R \) представляет собой гладкую монотонно возрастающую функцию на интервале \([0; \rho(\phi)]\), где \( \phi \in [0; 2\pi] \) и \( \rho(\phi) \) – фиксированные согласованные значения. Для вычисления интеграла в (5) будем использовать 5- точечную формулу Гаусса.

Для вычисления интегралов и производной в (6) зададим сетку с шагом по переменной \( \phi \) равным \( h_1 = \frac{2\pi}{n} \), по переменной \( x_M \) \( h_2 = \frac{d - c}{m} \).

Все интегралы в (6) будем вычислять по формуле Симпсона.

В работе [16] в случае линейного ИУ производную \( \rho'_\rho \) аппроксимировали правой разностной формулой. Численные эксперименты показали, что при относительно небольшом количестве узлов \( \Omega(j) \) (порядка 100), точность такой аппроксимации оказывается низкой ( \( \approx 0,06 \)) и в случае линейного ИУ получаемые погрешности оказывают существенное влияние на вычислительный процесс.

Поэтому будем аппроксимировать производную \( \rho'_\rho \) центральным разностным отношением второго порядка точности
\[
\rho'_\rho(\phi) = \frac{\rho(\phi + h_1) - \rho(\phi - h_1)}{2h_1}.
\]

В силу периодичности функции \( \rho(\phi) \) эту аппроксимацию можно использовать и для граничных точек. В самом деле, пусть функция определена на отрезке \([0; \Lambda]\), где \( \Lambda \) – период функции \( \rho(\phi) \): \( \rho(\phi + \Lambda) = \rho(\phi) \); тогда будет верно равенство \( \rho'_\rho(0) = \rho'_\rho(\Lambda) \), где
\[ \rho'_\varphi(0) = \frac{\rho(h_1) - \rho(-h_1)}{2h_1} = \frac{\rho(h_1) - \rho(\Lambda - h_1)}{2h_1}, \]

Таким образом, на границах сетки
\[ \rho'_\varphi(0) = \rho'_\varphi(2\pi) = \frac{\rho[2] - \rho[K - 1]}{2h_1}, \]
где в квадратных скобках указан номер массива значений \( \rho[j] \); \( K \) – количество элементов в сетке по переменной \( \varphi \). Отметим, что если область обладает симметрией относительно оси \( \varphi \), то эта производная будет равна нулю.

Учитывая ещё сказанное, получим дискретный аналог выражения (6) вида
\[ \Phi(\rho) = \sum_{i=1}^{N} \sigma[i] \cdot \left[ \sum_{j=1}^{K} \mu[j] \left( R(x_M[i], \rho[j]) - U^*(x_M[i]) \right) \right]^2 + \sum_{j=1}^{K} \mu[j] \cdot \left[ \rho^2[j] + T^2[j] \right] \rightarrow \min \]
(8)
где \( T = \rho'_\varphi \) – разностная схема, указанная выше; \( \sigma, \mu \) – коэффициенты формулы Симпсона.

Для реализации схемы (7) вычислим производную от (8) по переменной \( \rho[t] \), \( t \in [1; K] \):
\[ \Phi'_\rho[t] = 2\mu[t] \times \left[ \sum_{i=1}^{N} \left( \sigma[i] \cdot R_{\rho[t]}(x_M[i], \rho[t]) \times \left( \sum_{j=1}^{K} \mu[j] \cdot \left( R(x_M[i], \rho[j]) - U^*(x_M[i]) \right) \right) + \alpha[\rho[t] + TT[t]] \right) \right] \]
где производная \( R_{\rho[t]} = F(x_M[t], \rho[t]) \), а выражения \( TT[t] \) реализуются следующим образом:
\[ TT[t] = \frac{2\rho[t] - \rho[t - 2] - \rho[t + 2]}{4h_1^2} \]
для \( t \in [3, ..., K - 2] \); для остальных четырёх значений используются выражения:
\[ TT[1] = \frac{\rho[1] - \rho[3]}{4h_1^2}; \]
\[ TT[2] = \frac{2\rho[2] - \rho[K - 1] - \rho[4]}{4h_1^2}; \]
\[ TT[K - 1] = \frac{2\rho[K - 1] - \rho[K - 3] - \rho[2]}{4h_1^2}; \]
\[ TT[K] = \frac{\rho[K] - \rho[K - 2]}{4h_1^2}. \]

Для поиска шага минимизации \( k \) будем использовать метод «золотого сечения» для целевой функции \( \Phi(\rho + k \cdot I) \).

Численные эксперименты показали, что указанная функция является униформальной на интервале \( k \geq 0 \). Так как заранее определить интервал, на котором содержится точка минимума, невозможно, то будет придерживаться следующего алгоритма.

**Алгоритм.**

**Шаг 1.** Задаем стартовый интервал изменения \( k \): \( a = 0; b = e << 1 \) и погрешность метода «золотого сечения» \( e_1 << e \).

**Шаг 2.** Методом «золотого сечения» определим точку минимума целевой функции – \( k_{\min} \). Выведем значимую величину
\[ \Delta = \frac{b}{k_{\min}} - 1 > 0. \]

**Шаг 3.** Проверяем истинность неравенства \( \Delta < 0.1 \). Если «да», то увеличиваем правую грань интервала поиска минимума на 1 и переходим к шагу 2. Если «нет», то величина \( k_{\min} \) и будет требуемым минимумом целевой функции.

Параметр регулирования \( \alpha \) будем, следуя работе [4, 12, 24], определять интервальным образом: \( \alpha^{(q)} = f(\alpha^{(q-1)}, q) \), при этом на первом шаге метода сопряжённых градиентов положим \( \alpha^{(0)} = 0 \), а на втором – \( \alpha^{(1)} = \frac{W(x_M; \rho^{(1)})}{\Omega(\rho^{(1)})} \).

В работах [8, 14, 16] отмечается появление пилообразного эффекта «разбалтывания» приближенного решения в зависимости от выбора параметра регулировочной \( \alpha \). В случае линейного ИУ, как показывают работы, можно подобрать такое постоянное значение параметра \( \alpha^{(q)} = const \), что указанное пилообразование не будет заметным. В случае нелинейного ИУ такое значение параметра \( \alpha \) подобрать не удалось, поэтому для нейтрализации «разбалтывания» после каждого шага метода сопряжённых градиентов производилось сглаживание значений с помощью среднего арифметического двух соседних значений \( \rho[j] \).

3. Реализация численного алгоритма.

Рассматривая выше приведенный метод решения, можно отметить, что он зависит от выбора стартовых значений и закономерностей изменения следующих параметров \( \gamma^{(q)}, \alpha^{(q)}, \epsilon, e_1, \rho^{(0)} \). Численные эксперименты показали, что выбор конкретной реализации каждого из них оказывает
– Рисунок 2. Результат восстановления области и значения потенциала после 200 итераций и сглаживания только после первой итерации метода «сопряженных градиентов»

– Рисунок 3. Результат восстановления области и значения потенциала после 200 итераций и сглаживания после каждой итерации метода «сопряженных градиентов»

существенное влияние на результативность реше-ния обратной задачи.

Приведём пример реализации численного ал-горитма. Рассмотрим тестовую область в виде цилиндра длиной 100,0 м и сечением в виде эллипса, безразмерное уравнение которого в полярной системе координат имеет вид

$$\rho(\varphi) = \frac{a b}{z_M \cdot \sqrt{a^2 \sin^2 \varphi + b^2 \cos^2 \varphi}},$$  \hspace{1cm} (9)

gде положим $z_M = 150,0$; $a = 130,0$; $b = 70,0$ м.

Для моделирования погрешностей при натурных измерениях будем добавлять случайную по-правку к рассчитанным по формуле (2) значениям потенциала: $U^0 = U^* + 0,5 \cdot (\text{rand} - 0,5)$, где $\text{rand}$ — равномерно распределённые числа на отрезке $[0; 1]$, $U^*$ — точные расчётные значения потенциала по формуле (4).

Выбор указанных параметров:

$$\rho^{(0)} = 20,0 / z_M; \quad \varepsilon = 10^{-2}; \quad \varepsilon_1 = 10^{-6};$$

$$\gamma^{(q)} = \frac{(\Delta g - 2 \cdot \Delta \rho; G^{(q)})}{(\Delta g; I^{(q-1)})}, \quad \Delta g = G^{(q)} - G^{(q-1)},$$

$$G = \Phi^r,$$

$$\Delta \rho = \rho^{(q)} - \rho^{(q-1)}; \quad \alpha^{(q)} = \alpha^{(q-1)} \cdot 0,85^r.$$

Графический результат восстановления формы сечения цилиндра после 200 итераций приведён на рис. 2, 3.

СПИСОК ЛИТЕРАТУРЫ


4. Жданов, М. С. Теория обратных задач и регуляризация в геофизике / М. С. Жданов // -М.: Научный мир, – 2007, — 710 с.

REFERENCES

21. Ivanov, V. V. Disturbance of the natural electric field in the atmosphere before major mining and tectonic shocks and man-made earthquakes / V. V. Ivanov, V. A. hămäläinen, V. Orphan, Izv. universities. Mining journal. 2013, no. 7. Pp. 113 – 123.

Поступило в редакцию 07.09.2016
Received 7 September 2016