УДК 622.822

ПОЛУЧЕНИЕ ИНЕРТИЗИРУЮЩИХ СОСТАВОВ
С ЗАМОРЖИВАНИЕМ ЧАСТИЦ ЖИДКОСТИ ДЛЯ БОРЬБЫ С ПОЖАРАМИ

GETTING INERTING STRUCTURES
FREEZE LIQUID PARTICLES TO FIGHT FIRES

Галсанов Нима Лайдапович,
сочискатель, E-mail: galsanovnl@suek.ru
Galsanov Nima L., Candidate for a degree.

Название: Kuzbass State Technical University, 28 street Vesennyaya, Kemerovo, 650000, Russian Federation.

Annotation. Предложено устройство для получения инертизирующих составов путем совместного распыления жидкого азота и воды. Инертизирующие составы могут использоваться для предупреждения и тушения очагов самовозгорания углей. Испытания устройства показало, что параметры получаемого состава соответствуют результатам расчета теплофизических параметров инертной состава в зависимости от соотношения исходных компонентов. Представлены схемы подачи низкотемпературного инертизирующего состава в выработанное пространство с очагом самовозгорания.

Abstract. A device for inerting compositions by co-sputtering of liquid nitrogen and water. Inerting compositions can be used for preventing and extinguishing pockets of spontaneous combustion of coal. The test device showed that the parameters of the resulting composition are consistent with the calculation of thermal parameters of an inert composition, depending on the ratio of the starting components. Schemes supplying low-temperature inertizing-aing the composition in goaf of spontaneous combustion of the hearth.

Ключевые слова: шахта, уголь, выработанное пространство, очаг самовозгорания, жидкий азот, инертизирующий состав.

Keywords: mine, coal, mined-out space, center of spontaneous combustion, liquid nitrogen, an inverting structure.

Проведенные исследования показали, что в последние годы количество возникающих на шахтах Кузбасса подземных пожаров стабилизировалось [1]. Однако в последнее время увеличилась опасность самовозгорания угольной пыли, скапливающейся в выработанном пространстве [2,3]. Основную долю регистрируемых на угольных шахтах Кузбасса подземных пожаров составляют эндогенные пожары, причиняющие шахтам наибольший экономический ущерб. Для снижения экономических потерь от таких аварий необходимо применять способы быстрой ликвидации очагов самовозгорания.

Расчеты показали, что для повышения эффективности охлаждения очагов самовозгорания целесообразно использовать инертный состав, содержащий замороженные частицы жидкости в инертном газе, получаемый при распылении жидкого азота и воды [10-13].

При перемещивании воды и жидкого азота тепло, теряемое водой при контакте с жидким азотом, равно количеству тепла, получаемому жидким азотом при испарении. Исходя из теплового баланса, получаем следующее выражение для расчета соотношения расхода жидкого азота к воде, необходимого для получения инертного состава с заданной температурой

\[
\frac{G_q}{G_w} = \frac{1}{r} \left(\frac{c_w(t_o - t_L) + r_L + c_L(t_L - t_c)}{1} \right)
\]

где \(G_q \) – расход азота, кг/с; \(r_L \) – удельная теплота испарения жидкого азота, кДж/кг; \(G_w \) – расход воды, кг/с; \(c_w \) – удельная теплоемкость подаваемой воды, кДж/(кг·К); \(t_o \) – начальная температура воды, °C; \(t_L \) – температура замерзания воды, °C; \(r_L \) – удельная теплота замерзания воды, кДж/кг; \(c_L \) –
удельная теплоемкость льда, кДж/(кг·К); \(t_c \) — температура образуемого состава из азота и частиц замерзшей воды, °C.

На рис. 1 приведено рассчитанное по формуле (1) изменение соотношения расхода жидкого азота и воды для получения инертного состава, имеющего температуру -196 °C, в зависимости от величины начальной температуры воды. В расчетах принято, что удельная теплота испарения жидкого азота равна 197,5 кДж/кг, удельная теплоемкость воды 4,2 кДж/(кг·К), удельная теплоемкость льда 2,09 кДж/(кг·К), удельная теплота замерзания воды равна 324 кДж/кг.

Важным элементом для получения инертного состава является теплообменное устройство, в котором перемешиваются частицы распыляемого жидкого азота с каплями воды или водяным паром. В ходе выполнения работы было предложено несколько устройств для получения инертного состава. Условием надежной работы устройства является предотвращение контакта частиц воды с поверхностью теплообменной камеры, что может вызвать появление слоя льда на корпусе внутри устройства. Поэтому жидкий азот должен подаваться вдоль стенок теплообменной камеры и частично испаряться при контакте с поверхностью, создавая при испарении зону повышенного давления газа, препятствующего попаданию частиц воды на поверхность теплообменной камеры.

Приведенное на рис. 2 устройство для получения инертного состава состоит из теплообменной камеры цилиндрической формы, трубопроводов для подвода жидкого азота и воды или пара к кольцевым распылителям, а также форсунок для распыления подводимых компонентов. Работает устройство следующим образом. Жидкий азот поступает по трубопроводу 5 в кольцевой распылитель 3, расположенный у внутренней поверхности теплообменной камеры, откуда расплывается форсунками 6 вдоль корпуса 1 с теплоизоляционным слоем. Затем по трубопроводу 4 подается вода в кольцевой распылитель 2, расположенный ближе к оси теплообменника.
Рис. 3. Работа устройства для получения инертного состава.

Обменной камерой, откуда распыляется форсунками 7 в поток частиц жидкого азота. Взаимодействие частиц воды и жидкого азота приводит к интенсивному теплообмену, в результате которого жидкость азот испаряется, а частицы воды замерзают, превращаясь в кристаллы льда. По трубопроводу 4 может также подаваться водяной пар. Контактировая в теплообменной камере с частицами жидкого азота, пар конденсируется с последующим образованием мелкодисперсных частиц льда.

Образующийся состав, состоящий из газообразного азота и взвешенных частиц льда, выдается через патрубок 8 в трубопровод, через который поступает в обрабатываемое скопление угля. При движении через выработанное пространство происходит интенсивное охлаждение угля, что снижает его химическую активность. Поэтому инертные составы можно использовать для предупреждения самовозгорания угля. В случае появления инертного состава в очаг пожара происходит его быстрое охлаждение. Для регулирования параметров инертного состава можно изменять расходы жидкого азота и воды (или пара), а также исходную температуру подаваемой воды или пара.

Для проверки результатов расчета теплофизических параметров инертной смеси в зависимости от соотношения исходных компонентов была изготовлена экспериментальная установка (рис. 3). Подача воды на форсунки осуществлялась насосом. Жидкий азот получали от установки АГУ 8К и под давлением также раз브рыгивали в устройстве через форсунки. На выходе из устройства замеряли температуру инертного состава в зависимости от соотношения подаваемого азота и воды. Температура исходной воды равнялась 20 °C.

Проведенные исследования устройства показали, что при соотношении расходов жидкого азота к воде, равного 2, температура образующегося инертного состава составляла -100 °C. При увеличении подачи жидкого азота температура инертного состава снижалась и при соотношении G_азот/G_вода = 4 достигала значения -196 °C. Полученные результаты свидетельствуют о удовлетворительной сходимости результатов натурных и аналитических исследований свойств инертного состава.

Подача инертного состава с частицами замороженной жидкости позволяет не только эффективно охлаждать очаги самовозгорания, но и предотвращать возможность повторного возникновения процессов самовозгорания в обработанной зоне выработанного пространства. Так, проведенные эксперименты показали, что охлаждение угля позволяет

Рис. 4. Схема подачи инертного состава с земной поверхности:
1 - скважина; 2 - устройство для получения инертного состава; 3 - установка для хранения и выдачи жидкого азота; 4 - насос для подачи воды; 5 - емкость для хранения воды
значительно снизить сорбционную активность уггля по отношению к кислороду [14,15].

Очаги самовозгорания углей могут возникать в различных местах выработанного пространства шахт. Поэтому подача инертного состава в предупреждение самовозгорания углей и тушения возникших очагов пожаров может производиться через скважины, пробуренные с земной поверхности или из действующих подземных горных выработок. Для подачи инертного состава с земной поверхности необходимы емкости для хранения и выдачи жидкого азота (желательно передвижные), насос для подачи воды, емкость для воды и устройство для получения инертного состава. Вместо насоса и емкости с водой для получения инертных составов можно использовать передвижную паровую про- мысловую установку, предназначенную для получе- ния водяного пара. Схема подачи инертного со- става по скважине с поверхности приведена на рис. 4.

Для предупреждения самовозгорания или по- давления возникшего подземного пожара с земной поверхности бурят скважину 1 в выработанное пространство с очагом пожара или скоплением углей. Диаметр скважины выбирается в зависимости от необходимой производительности по инертному составу и может варьироваться в пределах 50–150 мм. На скважину устанавливают устройство для получения инертного состава 2, к которому с по- мощью трубопроводов подключают установку для выдачи жидкого азота 3, а также насос 4, нагнета- ющий воду из емкости 5. Совместное распыление жидкого азота и воды приводит к интенсивному теплопро- мению между компонентами с переходом жидкого азота в газообразное состояние, а частиц воды в кристаллы льда. Подаваемый низкотемперату- нный инертный состав распространяется в выра- ботанном пространстве и поступает в скопление угли для профилактики самовозгорания или в очаг пожара, где охлаждает разогретый угол.

Иногда особенности поверхности или большая глубина залегания очага подземного пожара не позволяют бурить скважину с земной поверхности или она оказывается экономически невыгодной. В таких случаях целесообразно бурить скважину из действующих горных выработок и оборудование располагать непосредственно в шахте (рис. 5). Диаметр скважины также выбирается в зависимо- сти от необходимой производительности инертного состава. Для удобства работ по предупреждению и тушению эндогенных пожаров в горной выработке можно делать въемку, в которой располагается необходимое оборудование.

Для хранения и выдачи жидкого азота в шахт- ных условиях можно использовать установку УТЖА-2, состоящую из двух цистерн ЦТК-0,5/0,25, закрепленных на платформе вагонетки ВГ-3,3. Ем- кость двух цистерн 1 м³, рабочее давление жидкого азота 0,25 МПа. Масса заливаемого азота 760 кг. Потери азота на испарение при хранении 0,366 кг/ч. Габаритные размеры установки: длина 3,45 м; ширина 1,25 м; высота 1,7 м. Масса установки в сбое 1350 кг, в заправленном состоянии 2110 кг. Выдача жидкого азота происходит под давлением газа, создаваемым холодным газификатором, входящим в состав цистерн ЦТК-0,5/0,25.

Использовать в шахтных условиях можно и под- ряженную шахтную установку «Азот», предназначен- ную для хранения, транспортировки и выдачи жидкого азота в подземных выработках. Установка состоит из цистерн ЦТК-1/0,25, укрепленной на переоборудованной платформе шахтной вагонетки. Цистерна имеет ограждение для предохранения ее от возможных механических повреждений. Емкость цистерны 1 м³, рабочее давление 0,25 МПа. Масса заливаемого жидкого азота 900 кг. Масса установки в сбое 1650 кг, в заправленном состоянии 2550 кг.

Для подачи воды в установку можно использо- вать платформу вагонетки, на которой установлены насос и емкость с водой. Получать воду под повы-
шенным давлением можно и из шахтного пожароопасного трубопровода. Образующийся в установке инертный состав подается по скважине в обрабатываемую зону со скоплением углей для предупреждения самовозгорания или в очаг подземного пожара для его подавления.

СПИСОК ЛИТЕРАТУРЫ

2. Портола В. А. Влияние угольной пыли на состав газов и эндогенную пожароопасность // Безопасность труда в промышленности. – 2003. – № 6. – С. 42-44.
7. Портола В.А. Перспектива применения азота для борьбы с пожарами и взрывами в шахтах // Вестник КузГТУ, 2006. № 3. – С. 57-59.

REFERENCES

Поступило в редакцию 12 октября 2016
Received 12 Oktober 2016