DOI: 10.26730/1999-4125-2017-4-126-129
УДК 532.137

Способ определения вязкости жидкостей малых объёмов
Method for Determining the Viscosity of Small Volume Fluids

Шахматов Кирилл Сергеевич1, врач, e-mail: shahmatovkirill@gmail.com

Shahmatov Kirill S.1, physician

Дона Денис Викторович2, кандидат техн. наук, доцент
Dony Denis V.2, C. Sc. (Engineering), Associate Professor

Басова Галина Григорьевна3, кандидат мед. наук, доцент, e-mail: basova_g_g@mail.ru
Basova Galina G.3, C. Sc. (Medical), Associate Professor

1 Кемеровская областная клиническая офтальмологическая больница, 650066 Россия, Кемерово, пр. Октябрьский 22 «а»
1 Kemerovo Regional Ophthalmologic Hospital, 650066, Russian Federation, Kemerovo, pr. Oktjabrsy, 22a,

2 Кемеровский технологический институт пищевой промышленности (университет), кафедра «Прикладная механика», 650056 Россия, Кемерово, б-р Строителей 47
2 Kemerovo Technological Institute of Food Industry (University) 650056, Russian Federation, Kemerovo, Boulevard Stroitely, 47

3 Кемеровский государственный медицинский университет, кафедра офтальмологии, 650056 Россия, Кемерово, ул. Ворошилова 22 «а»
3 Kemerovo State Medical University, 650056, Russian Federation, Kemerovo, ul. Voroshilova, 22a

Abstract. At the present stage of technology development, continuous medium viscosity measurements are relevant in various fields of human life: oil and gas industry, aviation, food industry, in the synthesis of man-made and synthetic polymers, healthcare industry etc. In order to improve the technological process, one of the priority tasks is the development of new researching methods and viscosity calculations. The article presents the description of a part of “Rheotest – 2” rotational viscometer that is used for determining the viscosity of a small volume liquid. To determine the test material viscosity, volume from 0.1 to 0.3 ml is required. The part was developed at the Department of Applied Mechanics of the FSBEI HE “Kemerovo Institute of the Food Science and Technology (University)”. The part consists of a nozzle and a base coat. The difference from the “Rheotest-2” rotary viscometer is that the bottom of the body structure has a recess of 10 mm in diameter in the center for investigated material, the sealed cover is provided with an elastic sealing along the perimeter and latch mechanisms. The approbation of the part was carried out using the substance with known viscosity. Glycerol was used, 5 measurements were made, in all experiments the viscosity corresponded to the declared parameters.

Keywords: viscosity, viscometer, rotary, “Rheotest - 2”, small volume.
Актуальность
Для решения ряда важных технологических задач необходимо определение вязкости. Вискозиметрия востребована при очистке буровых растворов (газ, нефть, уголь) с целью улучшения их потребительских свойств [1,2,5,6,16]. Транспортировка буровых растворов, как сложный технологический процесс, также невозможна без изучения вязкости [3,4,13,14]. Измерение вязкости проводится при синтезе искусственных и синтетических полимеров, очистке технических жидкостей, сточных греяк [7,8,9]. В поиске энергоэффективных гидродинамических схем подачи показатель вязкости является ведущим параметром [10,12]. Такие отрасли как медицина и фармация не являются исключением, где изучение вязкости используют в косметологии, стоматологии и при изготовлении лекарственных препаратов. Разнообразие физико-химических свойств сплошных сред, технологий, побуждает к совершенствованию, как способов исследований вязкости, так и способов ее расчета [11,14,15].

Цель исследования: разработать способ определения вязкости жидкостей малых объемов.

Материалы и методы: на базе ФГБОУ ВО «Кемеровский технологический институт пищевой промышленности (университет)», кафедра «Прикладная механика» доц., к.т.н. Д.В. Доня разработана деталь для «Rheotest - 2» для исследования вязкости жидкости в малых объемах (0,1 – 0,3 мл.). Получен патент на полезную модель №169522, №169523, №169577.

Результаты и обсуждение: Деталь состоит из насадки и подложки (рис.1.). Отличием от вискозиметра «Rheotest - 2» в том, что днище корпуса имеет в центре выемку диаметром 10 мм для исследуемого материала, герметичная крышка снабжена эластичной прокладкой по периметру и замковыми механизмами.

Корпус прибора показан 1, днище корпуса с выемкой показано 2, при этом диаметр выемки обозначен D. Цилиндр, закрепленный с возможностью вращения 3 закреплен на валу 4 и работает от элемента питания 6, встроенного в крышку 5. Крышка 5 корпуса 1 герметизирована эластичной прокладкой (не показано). В качестве эластичной прокладки может быть использован любой эластичный материал, обладающий свойствами герметичности. Поршень для соединения с компьютером и измерительными приборами обозначен 7. Материал помещают в выемку днища прибора 2 диаметром 10 мм, затем опускают крышки 5 плотно прижимая материал цилиндром, закрепленным с возможностью вращения 3. Резиновая прокладка плотно герметизирует крышку 5, замковые механизмы на крышке (не показаны) защелкивают. В качестве замковых механизмов возможно использование любых защелок, фиксирующих положение крышки. Признаки «эластичная прокладка» и «замковый механизм» позволяют обеспечить надежность выполнения измерений прибором, исключить сбой, что очень важно при измерении материалов в малых объемах. Вискозиметр работает от элемента питания 6, который приходит в движение вал вращения 4, и через порт 7 на компьютер передается информация о скорости вращения, либо передаются данные на измерительную аппаратуру.

При подключении прибора приводится в движение вал вращения 4 с закрепленным на нем цилиндром 3. Расчетно при определении вязкости определяют величину крутящего момента, возникающего при вращении цилиндра с радиусом Р:

\[M_{пл} = \frac{2}{3} \pi R^2 \theta \]

где \(\theta \) - напряжение сдвига, Па.

Все данные о скорости вращения и возникающем напряжении в электронном виде передаются на компьютер для дальнейшего расчета показателей скорости сдвига, вязкости и т.д.
Проведена апробация работы данной детали с раствором известной вязкости — глицирином, проведено 5 измерений. Во всех исследованиях вязкость соответствовала заявленным параметрам.

СПИСОК ЛИТЕРАТУРЫ

1. Изучение реологических свойств и подбор математической модели реологического поведения водогрунтовой суспензии при транспортировке и хранении/ Буянуев С.Л., Кондратенко А.С., Хмелеев А.Б., Чукреев Д.А., Сандаков И.М., Благочинов С.А. - Инновационные технологии в науке и образовании. Материалы 4-й международной научно-практической конференции. - 2015. С. 156-162.

7. Леванячев В.В. Анализ полной реологической модели течения расплава полимера. - Восточно-Европейский журнал передовых технологий. 2015. Т. 2. № 6 (74). С. 11-16.

9. Кириллов Е.А., Тимощин Ю.Н. Ньютоновское течение структурированных систем. Х. Предельы ньютоновского поведения - Жидкие кристаллы и их практическое использование. 2014. Т. 14. № 2. С. 74-82.

15. Хизбулина С.Ф. Математическая модель течения Кузтта ньютоновской аномально термовязкой жидкости. - В сборнике: Труды Шестой Российской национальной конференции по теплообмену 2014. С. 301-305.

REFERENCES

Поступило в редакцию 7 июня 2017
Received 7 June 2017