DOI: 10.26730/1999-4125-2018-2-134-139

УДК 52.45.19

ВЛИЯНИЕ ОЗОНИРОВАНИЯ НА КОМПОНЕНТНЫЙ СОСТАВ НЕФТИ И НЕФТЕПРОДУКТОВ

EFFECT OF OZONE TREATMENT ON COMPOSITION OF PETROLEUM AND PETROLEUM DISTILLATE FRACTIONS

Сemenova Svetlana Aleksandrovna,
к.х.н., доцент, e-mail: semlight@mail.ru
Svetlana A. Semenova, Ph. D., docent
Патраков Юрий Федорович,
д.х.н., профессор, e-mail: yupat@icc.kemsc.ru
Yury F. Patrakov, doctor of chemistry, Professor

Федеральный исследовательский центр Угля и углеводородов Сибирского отделения Российской академии наук (Институт углей СО РАН), 650065 г. Кемерово, пр. Ленинградский, 10, Россия
Federal Research Center of Coal and Coal Chemistry, Siberian branch of the Russian Academy of Sciences (Institute of coal SB RAS), 650065, Kemerovo, Leningradskiy Ave., 10, Russia

Annotation: В статье представлена оценка влияния озонирования на химический состав нефти и нефтипродуктов. В качестве объектов исследования использовали образцы сырой нефти, а также дистиллятных фракций с различными температурами кипения, составом и свойствами: керосин, твердые и масло. Основные методы исследования - IK- и 1H ЯМР-спектроскопия. Установлено, что озонолитическая обработка более эффективна для сырой нефти и среднетемпературных нефтиных фракций. В реакции с озоном вступают главным образом полициклические ароматические, ненасыщенные соединения и алкены заместители конденсированных структур с образованием новых соединений с n- и циклозамещенным углеводородным каркасом и моноциклическими ароматическими. Озонирование нефти и нефтепродуктов способствует появлению в их составе новых углеводородов различной функциональности: альдегидов, кислот, линейных и циклических эфиров. Полученные закономерности могут быть использованы для получения гетерополярных реагентов на основе нефти и нефтепродуктов для технологии флотационного обогащения каменных углей.

Abstract: The article presents an assessment of the influence of ozonation on the chemical composition of oil and petroleum products. Examples of crude light oil and distillate fractions, with different boiling temperatures, composition and properties: kerosene, gas oil and fuel oil were used as objects of research. The main research methods are IR and 1H NMR spectroscopy. It is established that ozone treatment is more effective for crude light oils and medium-temperature oil fractions. Mainly polycyclic aromatics, unsaturated compounds and alkyl substituents of the aromatic structures are involved in the reaction with ozone with the formation of new compounds with n- and cycloalkenyl hydrocarbon skeleton and monomeric aromatics. Ozonation of petroleum products contributes to the appearance of oxygen-containing compounds of different functionality in their composition: aldehydes, acids, linear and cyclic esters. The obtained regularities can be used to obtain heteropolar reagents based on petroleum products for the technology of flotation enrichment of coal.

Ключевые слова: нефть, нефтипродукты, окисление, озонирование, спектральный анализ.
Key words: oil, petroleum hydrocarbons, oxidation, ozonation, spectral analysis.

Продукты нефтепереработки в качестве сырья и реагентов находят широкое применение в различных областях промышленности — энергетике, производстве автомобилий, химической, лакокрасочной промышленности, в процессах флотационного обогащения каменных углей. Состав нефтепродуктов представлен органическими соединениями различного строения и состава, среди которых парафино-нафтеновые, алкилзамещенные, моно- и бициклические ароматические углеводороды, незначительные количества непределенных и гетерозамещенных соединений [1].

Процессы переработки нефтепродуктов нередко включают их модифицирование с целью придания необходимых свойств. Например, в технологии флотационного обогащения углей более эффективно обладают флотационные комплексы.
Таблица 1. Характеристика исследуемых нефтепродуктов

<table>
<thead>
<tr>
<th>Реагент</th>
<th>Образец</th>
<th>Плотность, кг/м³</th>
<th>Кинематическая вязкость, мм²/с</th>
<th>Количество поглощенного озона, т/кг</th>
<th>KЧ, мт/100г</th>
<th>Ke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Керосин</td>
<td>Исходный</td>
<td>820</td>
<td>1,25</td>
<td>-</td>
<td>0,5</td>
<td>0,12</td>
</tr>
<tr>
<td></td>
<td>Озонированный</td>
<td></td>
<td>1,25</td>
<td>-</td>
<td>4,7</td>
<td>0,47</td>
</tr>
<tr>
<td>Нефть</td>
<td>Исходный</td>
<td>860</td>
<td>8,0</td>
<td>14,3</td>
<td>10,0</td>
<td>0,23</td>
</tr>
<tr>
<td></td>
<td>Озонированный</td>
<td></td>
<td></td>
<td>36,7</td>
<td>19,2</td>
<td>1,32</td>
</tr>
<tr>
<td>Термогазойль</td>
<td>Исходный</td>
<td>910</td>
<td>15,0</td>
<td>-</td>
<td>0,5</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Озонированный</td>
<td></td>
<td></td>
<td>34,5</td>
<td>19,2</td>
<td>0,77</td>
</tr>
<tr>
<td>Мазут</td>
<td>Исходный</td>
<td>990</td>
<td>115,0</td>
<td>-</td>
<td>5,0</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>Озонированный</td>
<td></td>
<td></td>
<td>25,6</td>
<td>9,3</td>
<td>0,32</td>
</tr>
</tbody>
</table>

* Для озонированных образцов эти параметры не определяли.

действия, сочетающие в себе свойства аполлярных углеводородов (собирателей) и полярных соединений (пенообразователей) [2]. Получению комплексных гетерополярных реагентов способствует окислительное модифицирование углеводородов или их смесей [3].

Среди окислительных методов модифицирования углеводородов с участием минералов кислот, пероксида водорода, пермanganата калия, молекулярного кислорода и др. большую эффективность проявляют озонирование. Озон характеризуется высокой реакционной активностью и селективностью к определенным типам связей (например, -С=С- и гетеротопам (-ОН) при низких температурах и концентрациях реагента [4-6].

Для анализа структурных параметров нефтепродуктов широко используются методы молекулярно-спектрального анализа, среди которых наиболее чувствительными и информативными являются ИК- и ЯМР 1Н-спектроскопии [7-9]. В данной работе исследовалось влияние озонирования на изменение химического состава нефтепродуктов с использованием методов ИК- и ЯМР 1Н-спектроскопии с целью последующего использования результатов для получения флюороспектров.

Озонирование нефтепродуктов проводили с использованием лабораторного озонатора мощностью 50 В при комнатной температуре и атмосферном давлении в реакторе барботажного типа. Концентрация озона в озон-кислородной смеси около 100 мг/л. Концентрацию озона на входе и выходе из реактора определяли УФ-газоанализатором (поглощение озона в ультрафиолетовой области спектра при длине волны около 250 нм).

Инфракрасные спектры (ИК) регистрировали на Фурье-спектрометре «ИнфраЛаб-ФТ-801» в области 400-4000 см⁻¹. Оптическую плотность полос поглощения нормировали по полосе 1460 см⁻¹ (поглощение C-H связей, являющихся мерой органического вещества).

Степень окисленности Ke рассчитывали по отношению суммарной интенсивности (суммы интегральных оптических плотностей (Д)) полос поглощения кислородсодержащих гидроксилных (3400 см⁻¹) и карбоксильных (1730 см⁻¹) групп к °CH₃, -CH₂- и алифатических (1600 см⁻¹) групп: $K_{e} = (D_{3400} + 2D_{1730}) / D_{1600}$.

ЯМР 1Н-спектры продуктов получали на спектромеете «Avance AI 300» фирмы «Bruker», растворитель — дейтеризованный хлороформ. Разрешение и количественную интерпретацию спектров проводили с использованием методик [10, 11].

Вязкость нефтепродуктов определяли на вискозиметре ВНЖ с диаметром капилляров от 0,45 до 1,41 мм.

Кислотное число (KЧ) определяли по ГОСТ 22304-77 титрованием растворенного в спирто-бензольной смеси углеводородного образца раствором КОН (индикатор - фенолфталеин).

Исследуемые нефтепродукты существенно отличаются по физическим свойствам (например, вязкость образцов изменяется от 0,43 сСт у легкой нефти до 118 сСт у мазута (табл. 1)), что определяет различную растворимость озона и скорость его взаимодействия с реакционными группами углеводородов. Наиболее реакционной способностью отличаются углеводороды нефти и термогазойль (средневеликолитражной фракции нефти, $T_{кн} = 300–350{^°}С$) [11], что демонстрируется относительно высоким количеством поглощенного озона за равную продолжительность времени обработки (табл. 1).

Озонирование керосина (низкокипящей фракции нефти, $T_{кн} = 200-300{^°}С$) и мазута (высокотемпературной фракции, $T_{кн} > 350{^°}С$) [1] приводит к образованию продуктов с кислотным числом KЧ и степенью окисленности K_{e} в 2-4 раза ниже, чем у других исследуемых образцов.

По данным ИК-спектроскопии (рис. 1, табл. 2), в составе озонированных нефтей, керосина и га-
ние относительного содержания алифатических CH₂-связей (2920 см⁻¹) при увеличении доли метильных (2850, 1380 см⁻¹) и алициклических (3050-3100, 970 см⁻¹) фрагментов. Для мазута (тёмной нефтяной фракции), характеризующегося присутствием высокомолекулярных парафинов и асфальтенов [1], изменения в ИК-спектрах выражены в меньшей степени, по сравнению с легкокипящими фракциями и сырой нефтью.

Результатом взаимодействия углеводородов нефтепродуктов с озоном является образование кислородсодержащих групп различной функциональности. В ИК-спектрах возрастает интенсивность полос поглощения OH-сигналов и карбоно- вых кислот (3400 см⁻¹), C=O лактонов и ангидридов (1780 см⁻¹), C=O алифатических (1730 см⁻¹) и ароматических (1710 см⁻¹) кислот, ароматических кетонов (1650 см⁻¹), C-O циклических эфиров, фурфуранов и лактонов (1260, 970-1000 см⁻¹), S=O сульфоксидов (1300, 1150, 1050 см⁻¹) (рис. 1, табл. 2).

Деструктивные окислительные процессы, про- текающие при озонировании н-, изо- и циклоалканов [12], могут привести к образованию межмолекулярных углерод-углеродных или алкил-эфирных связей с циклизацией линейных фрагментов, что подтверждается увеличением оптической плотности D370 и D375, отвечающей за поглощение циклоалканов и циклических эфиров (табл. 2). Структура подобного рода может участвовать в формировании высокомолекулярных смолистых продуктов.

На основании анализа Н Ñ ЯМР-спектров были определены количественные значения нормализованных интегральных интенсивностей основных типов протонов компонентов нефтепродуктов. Показано (табл. 3), что доминирующими компонентами в составе нефтепродуктов являются алифатические и нафтеновые углеводороды с химическими сдвигами сигналов в диапазоне 0-2,3 м.д. Доля атомов водорода в алифатической части спектров варьирует от 74 % отн. (для компонентов газойля) до 97 % отн. (для остальных образцов). Основными структурными фрагментами нефтепродуктов являются CH₃-группы парафиновых цепей и циклоалканов (31-60 % отн.); доля протонов в составе CH₃-
Таблица 3. Фрагментарный состав нефтепродуктов по спектрам 1H ЯМР
Table 3. The fragmented composition of petroleum products by 1H NMR spectra

<table>
<thead>
<tr>
<th>Диапазон ХС, м.д.</th>
<th>Отнесение атомов водорода</th>
<th>Образцы нефтепродуктов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нефть</td>
<td>Керосин</td>
</tr>
<tr>
<td>0,0-1,0</td>
<td>28,04</td>
<td>32,15</td>
</tr>
<tr>
<td>1,0-2,0</td>
<td>29,38</td>
<td>30,15</td>
</tr>
<tr>
<td>2,0-2,25</td>
<td>60,37</td>
<td>56,45</td>
</tr>
<tr>
<td>2,25-2,8</td>
<td>61,09</td>
<td>58,91</td>
</tr>
<tr>
<td>2,8-4,5</td>
<td>2,43</td>
<td>1,21</td>
</tr>
<tr>
<td>4,5-6,0</td>
<td>2,42</td>
<td>1,63</td>
</tr>
<tr>
<td>5,0-7,3</td>
<td>2,79</td>
<td>4,88</td>
</tr>
<tr>
<td>6,0-8,0</td>
<td>1,99</td>
<td>4,40</td>
</tr>
<tr>
<td>7,3-8,0</td>
<td>0,36</td>
<td>0,55</td>
</tr>
<tr>
<td>8,0-8,6</td>
<td>0,27</td>
<td>0,53</td>
</tr>
<tr>
<td>8,6-10</td>
<td>1,48</td>
<td>0,91</td>
</tr>
<tr>
<td></td>
<td>0,87</td>
<td>0,49</td>
</tr>
<tr>
<td></td>
<td>2,17</td>
<td>2,55</td>
</tr>
<tr>
<td></td>
<td>2,49</td>
<td>2,61</td>
</tr>
<tr>
<td></td>
<td>0,22</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td>0,15</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>0,34</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>0,34</td>
<td>0,30</td>
</tr>
<tr>
<td>9,8-10</td>
<td>1,61</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>0,92</td>
<td>0,92</td>
</tr>
</tbody>
</table>

Группы изменяются от 10 (газойль) до 32 (керосин) % отн. Атомы водорода олефиновых фрагментов, регистрируемые в диапазоне химических сдвигов 4,5-6,0 м.д., составляют 0,5-1,5 % отн. Ароматические соединения (реегистрация в области 6,0-8,6 м.д.) распределены по нефтяным фракциям неравномерно: большая доля атомов водорода соответствует ароматическим фрагментам компонентов газойля - 25 % отн., в составе мазута их доля 5,8 % отн., у сырьевой нефти и керосина - около 3 % отн.

В результате озонации по данным 1H ЯМР-спектроскопии в составе нефтепродуктов отмечены общие закономерности и изменения структурных фрагментов (табл. 3, рис. 2). К примеру, отмечается снижение доли водорода в составе олефиновых (4,5-6,0 м.д.) и полициклических ароматических (7,3-8,6 м.д.) соединений, а также СН₃-групп в α-положении к ароматическим фрагментам (2,25-2,8). Увеличивается доля водорода в составе СН₃-групп насыщенных соединений (0-2,0 м.д.), СН- и СН₂-групп нафтенов и циклоалканов (2,0-2,25 м.д.), а также моноциклических аренов (0-7,3 м.д.), что согласуется с данными ИК-спектроскопии (табл. 2). Результатом озонолитического воздействия на углеводороды нефти и нефтепродуктов является появление в ЯМР-спектрах химических сдвигов протонов, связанных с карбонильной группой (8,6-10 м.д.) (рис. 2).

Полученные сведения находятся во взаимосвязи с реакционными особенностями озона, среди которых отмечаются более высокие скорости взаимодействия по С-C-связям непредельных ($k = 2-5 \cdot 10^7$ л/моль-сек), полициклических ($k = 20-500$ л/моль-сек) углаходородов и С-C-связям в α-положении к ароматическому ядру ($k = 0,2-10$ л/моль-сек) по сравнению с С-C-связями бензола ($k = 0,06$ л/моль-сек) и C-C-связями альканов и цикланов ($k = 0,02-0,2$ л/моль-сек) [12]. Невысокая степень преобразованности углеводородов мазута (по данным КЧ и K_{o} (табл. 1), ИК- (табл. 2), 1H ЯМР-спектроскопии (табл. 3), возможно, обусловлена высокой вязкостью нефтепродукта и связанными с этим диффузионными ограничениями молекул озона.

Таким образом, в ходе выполнения данной работы установлены основные особенности и законо-
мерности преобразования структурных фрагментов компонентов при озонировании нефтепродуктов, которые заключаются в следующем:

- озонолитическая обработка нефтепродуктов более эффективна для сырых легких нефтей и среднетемпературных нефтяных фракций;

- в реакциях с озоном участвуют главным образом полициклические арены, непредельные соединения и алкильные заместители ароматических структур с образованием новых соединений с н- и циклоалкильными углеводородным каркасом и моноциклических аренов;

- озонирование нефтепродуктов способствует появлению в их составе кислородсодержащих соединений различной функциональности: альдегидов, кислот, линейных и циклических эфиров, что может быть полезно для получения гетерополярных реагентов для технологии флотационного обогащения каменных углей.

Авторы выражают благодарность сотрудникам ЦКП и лаб. НОТОУ НУ ФИЦ УУХ СО РАН и за помощь в выполнении работы и интерпретации физико-химических методов анализа УВР: к.х.н. С.Ю. Лырчикову, В.Ю. Мальшеву, Ю.А. Харланенковой и А.В. Шилеву.

СПИСОК ЛИТЕРАТУРЫ

4. Мурашкина А.В., Лырчиков Н.М. Влияние кислородсодержащего газа на качество целевого продукта и параметры процесса окисления гудронов // Технологии нефти и газа. 2014. Т. 91. № 2. С. 24-28.
7. Сварская Л.И., Филатов Д.А., Герзьмаа Т., Алтухина Л.К. Оценка степени биодеструкции нефти методами ИК- и ЯМР 1Н-спектроскопии // Нефтехимия. 2009. Т. 49. № 2. С.153-158.
8. Садыков Б.Р., Кошниеев Д.Ф., Калбисин Г.А. Количественная спектроскопия ЯМР 1Н и экологически чистые технологии анализа состава и свойств нефти и нефтепродуктов // Защита окружающей среды в нефтегазовом комплексе. 2013 № 4. С. 51-56.
REFERENCES

Поступило в редакцию 02.04.2018
Received 02.04.2018