
УДК 622.23.05, 51-74

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ВЗАИМОДЕЙСТВИЯ УЗЛА СОПРЯЖЕНИЯ СЕКЦИЙ ГЕОХОДА С ГЕОСРЕДНЕЙ И СМЕЖНЫМИ СИСТЕМАМИ

DEVELOPMENT OF THE MATHEMATICAL MODEL OF INTERACTION OF THE GEOKHOD’S BEARING UNIT WITH GEO-ENVIRONMENT AND RELATED SYSTEMS

Аксенов Владимир Валерьевич1,2,
доктор техн. наук, e-mail: 55vva42@mail.ru

Vladimir V. Aksenov 1,2, Dr.Sc,

Беглаков Вячеслав Юрьевич1,
кандидат техн. наук, доцент, e-mail: begljakov@rambler.ru

Vyacheslav Yu. Beglyakov 1, Ph.D. Associate Professor,

Блацук Михаил Юрьевич1,
кандидат техн. наук, доцент, e-mail: mbv.tpu@gmail.com

Mikhail Yu. Blaschuk 1, Ph.D. Associate Professor,

Дронов Антон Анатольевич1,
ст. преподаватель, e-mail: aa-dronov@mail.ru

Anton A. Dronov 1, Senior Lecturer

1Юргинский технологический институт Национального исследовательского Томского политехнического университета, 652061, Россия, г. Юрга, ул. Ленинградская, 26
2Yurga Institute of Technology of National Research Tomsk Polytechnic University, 26 street Leninogradskaya, Yurga, 652061, Russian Federation
3Научно-исследовательский центр ООО "Сибирское НПО" Россия, 650002, Кемерово, Сосновый бульвар, 1
4Scientific and research centre LLC "Siberian Research and Production Association", 650002, 1 Sosnoviy bul., Kemerovo, Russia

Аннотация: Разработана математическая модель взаимодействия узла сопряжения секций геохода с геосредой и смежными системами. Модель учитывает вариативность компоновки узла сопряжения секций геохода и открывает возможности для дальнейшего определения взаимодействий элементов узла сопряжения секций геохода между собой.

Abstract: The mathematical model of interaction of the geokhod’s bearing unit with geo-environment and related systems was developed. The model takes into account the variability of the geokhod’s bearing unit and opens up the possibilities for further determining the interactions of the elements of the geokhod’s bearing unit with each other.

Ключевые слова: математическая модель, геоход, узел сопряжения секций геохода.
Key words: mathematical model, geokhod, the geokhod’s bearing unit.

Введение: Геоход – проходческий аппарат, который осуществляет движение в горном массиве за счет взаимодействия со сформированной им системой законченных каналов [1,2]. Геоход является новым классом горной техники, вследствие чего возникает ряд сложностей при его проектировании и изготовлении [3–9]. Создание математических моделей взаимодействия систем и элементов геохода между собой является актуальной задачей [10]. Определению сил и моментов, действующих на геоход во время движения в горном массиве, были посвящены работы Аксенова В.В., Эльдера А.Ф., Горбунова В.Ф., Нагорного В.Д., Ефременко А.Б., Беглакова В.Ю., Блацук М.Ю., Тимофеева В.Ю., Аникеева К.А., Ермакова А.Н., Садовиц В.Ю.[1,2,11-20]. В части данных работ рассматривались...
вались конструкции геоходов предыдущих поколений, реализующих раздельный режим перемещения секций геохода [1]. Остальные работы были посвящены отдельным узлам и системам геохода [11–20]. Геоход нового поколения реализует принцип совмещенного перемещения секций. Это возможно за счет введения в его конструкцию узла соединения секций (УСС) [10].

Для обоснования конструктивных параметров УСС необходимо определение характера внешних воздействий и внутренних взаимодействий УСС. К
Таблица 1. Обозначения к схеме (Рисунок 1)
Table 1. Legend to the design scheme (Figure 1)

<table>
<thead>
<tr>
<th>Обозначение величины</th>
<th>Единицы измерения</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_T</td>
<td>Н</td>
<td>суммарная сила тяги внешних движителей</td>
</tr>
<tr>
<td>P_{h}^R</td>
<td>Н</td>
<td>нормальная составляющая нагрузок от горного давления на головную секцию</td>
</tr>
<tr>
<td>P_{h}^{CT}</td>
<td>Н</td>
<td>нормальная составляющая нагрузок от горного давления на стабилизирующую секцию</td>
</tr>
<tr>
<td>P_{h}^{UCC}</td>
<td>Н</td>
<td>нормальная составляющая нагрузок от горного давления на оболочку УСС</td>
</tr>
<tr>
<td>R_{θ}</td>
<td>Н</td>
<td>проекция результатирующей силы на ось вращения геохода от работы исполнительного органа главного забоя</td>
</tr>
<tr>
<td>R_{cl}</td>
<td>Н</td>
<td>суммарная реакция пород контура выработки на внешние двигатели</td>
</tr>
<tr>
<td>$R_{повд}$, $R_{повд}^{UCC}$</td>
<td>Н</td>
<td>суммарные нормальные составляющих усилий внедрения исполнительных органов внешних движителей и элементов противовращения в приконтуурный массив при движении геохода соответственно</td>
</tr>
<tr>
<td>T_{cl}, $T_{\theta}^{повд}$</td>
<td>Н</td>
<td>суммарные силы трения внешних движителей и элементов противовращения об вмещающую породу соответственно</td>
</tr>
<tr>
<td>T_{cl}^{UCC}, T_{θ}^{UCC}, T_{cl}^{CT}</td>
<td>Н</td>
<td>суммарные силы трения оболочек головной секции, УСС и стабилизирующей секции об вмещающую породу соответственно</td>
</tr>
<tr>
<td>M_{θ}</td>
<td>Н·м</td>
<td>вращающий момент сопротивления резанию на исполнительном органе главного забоя</td>
</tr>
<tr>
<td>$M_{повд}$</td>
<td>Н·м</td>
<td>вращающий момент сопротивления резанию на исполнительных органах внешних движителей</td>
</tr>
<tr>
<td>$M_{повд}^{UCC}$</td>
<td>Н·м</td>
<td>вращающий момент сопротивления резанию на исполнительных органах элементов противовращения</td>
</tr>
<tr>
<td>$M_{ГМ}$</td>
<td>Н·м</td>
<td>вращающий момент, необходимый для перемещения разрушенной породы из нижней части геохода вверх</td>
</tr>
<tr>
<td>G_{R}, G_{UCC}, G_{CT}</td>
<td>Н</td>
<td>силы тяжести, действующие на головную секцию, УСС и стабилизирующую секцию со смонтированным на них оборудованием соответственно</td>
</tr>
<tr>
<td>$G_{ном}$, $G_{ГМ}$</td>
<td>Н</td>
<td>силы тяжести, действующие на отбитую и транспортируемую горные массы, находящихся внутри геохода</td>
</tr>
<tr>
<td>$r_T = r_{CT}$</td>
<td>м</td>
<td>радиусы головной и стабилизирующей секций (по оболочке)</td>
</tr>
<tr>
<td>$h_{шт}$</td>
<td>м</td>
<td>высота элементов противовращения и внешних движителей геохода соответственно</td>
</tr>
<tr>
<td>h_{cl}</td>
<td>м</td>
<td>угол подъёма выработки</td>
</tr>
<tr>
<td>β</td>
<td>град</td>
<td>угол подъёма внешнего двигателя</td>
</tr>
<tr>
<td>ω</td>
<td>с^{-1}</td>
<td>угловая скорость вращения головной секции геохода</td>
</tr>
</tbody>
</table>

Внешним относятся воздействие геоэлектрический и смежных систем, а к внутренним — взаимодействие элементов УСС между собой.

Рассмотрены два варианта компоновки УСС.
Рис. 3. Головная часть расчетной схемы
Fig. 3. The head part of the design scheme

жение. Или она может быть сопряжена со стабилизирующей секцией геохода (рисунок 1, б) и существовать с ней только постулатичное движение.

Материалы и методы: Для определения внешних воздействий была составлена расчетная схема и внешних сил, действующих на оболочку геохода (Рисунок 2). Обозначение, примененные на схеме, приведены в таблице 1. На схеме учтено, что направление сил трения оболочки УСС о породу выработки меняется в зависимости от варианта компоновки. При первом варианте компоновки сила трения оболочки УСС о породу выработки направлена вдоль линии расположения внешних движений геохода. На схеме она обозначена как $T_{об}^{об}$. При втором варианте компоновки она направлена вдоль траектории движения геохода. На схеме она обозначена как $T_{об}^{об}$. Что позволяет сделать дополнение: $R_{об}^{об} = 0$, $M_{об}^{об} = 0$, $M_{з}^{об} = 0$.

Была составлена система уравнений для головной части расчетной схемы (Рисунок 3):

\[
\begin{align*}
F_{р} - R_{о} - R_{пов} \cdot \cos \beta - (G_{r} + G_{осм}) \cdot \sin \alpha - T_{об} \cdot \sin \beta - R_{об}^{об} \cdot \sin \beta - R_{об}^{об} &= 0 \\
M_{об}^{об} - M_{об}^{об} - T_{об}^{об} \cdot \left(r_{г} + \frac{h_{об}}{2} \right) \cdot \cos \beta - R_{об}^{об} \cdot \left(r_{г} + \frac{h_{об}}{2} \right) \cdot \sin \beta - T_{об}^{об} \cdot r_{г} \cdot \cos \beta - M_{об}^{об} &= 0 \\
R_{об}^{об} \cdot \sin \beta - T_{об}^{об} \cdot \cos \beta - (G_{r} + G_{осм}) \cdot \cos \alpha - T_{об}^{об} \cdot \cos \beta - R_{об}^{об} \cdot \sin \beta - R_{об}^{об} &= 0
\end{align*}
\]

Значения $T_{вл}$ и $F_{р}$ были определены в работе [1]:

\[
T_{вл} = |R_{вл}| \cdot f_{тр}
\]
\[
F_{р} = R_{вл} \cdot \cos \beta
\]

где $f_{тр}$ – коэффициент трения стали о вмещающую породу.

После подстановки значений $T_{вл}$ и $F_{р}$ в приведения общих членов, система уравнений (1) приняла вид.
С учетом введенных констант R_1, R_2 и M_1, выражения (3-5) приняли вид:

$$R_X^r = R_{h_1} \cdot \cos \beta \cdot (1 - f_{TP} \cdot tg\beta) + R_1$$

(6)

$$M_X^r = M_1 - R_{h_1} \left(r_r + \frac{h_{CT}}{2} \right) \cdot \cos \beta \cdot (f_{TP} + tg\beta)$$

(7)

$$R_y^r = R_{h_1} \cdot \cos \beta \cdot (f_{TP} + tg\beta)$$

(8)

На хвостовой части расчетной схемы (Рисунок 4) введены уравновешивающие систему сил R_{CT}^r, M_{CT}^r, приложенные в сечении b-b и направленные вдоль осей x, y, z соответственно. M_{CT}^r — уравновешивающий систему крутящий момент. M_{CT}^r и M_{CT}^z — уравновешивающие систему изгибающие относительно осей y и z моменты.

С учетом допущений, принятых ранее, была составлена система уравнений для хвостовой части расчетной схемы (Рисунок 4):

$$R_y^{CT} = R_{CT1} \cdot \cos \beta - (G_T + G_{CTT}) \cdot \sin \alpha - T_{CT}r_r - R_{CT1} \cdot \cos \beta$$

(9)

$$M_{CT}^r = M_{CT1} - R_{CT1} \left(r_r + \frac{h_{CT}}{2} \right) \cdot \cos \beta \cdot (f_{TP} + tg\beta)$$

Значение T_{CT} было определено в работе [1]:

$$T_{CT} = \frac{M_{sp} \cdot f_{TP}}{r_r + \frac{h_{CT}}{2}}$$

где M_{sp} — вращающий момент, развиваемый трансмиссией геохода, Нм.

После подстановки значения T_{CT} и приведения общих членов система уравнений (9) приняла вид:
Рис. 5. Средняя часть расчетной схемы
Fig. 5. The middle part of the design scheme

\[
\begin{align*}
R_{zx}^c &= T_{zx}^c - (G_{zx} + G_{yzz}) \cdot \sin \alpha - \frac{M_{zx}}{r_z + h_{zz}} \cdot f_{zr} - R_{zr} = 0 \\
-M_{zx} + R_{zr} \left(r_z + \frac{h_{zz}}{2} \right) &= M_{zx}^c = 0 \\
R_{xy}^c - (G_{xy} + G_{yzy}) \cdot \cos \alpha &= 0
\end{align*}
\]

(10)

Из уравнений системы (10) были получены значения \(R_{x^C} \), \(R_{y^C} \) и \(M_{z^C} \):

\[
R_{x^C} = T_{x^C}^c + (G_{x^C} + G_{yzy}) \cdot \sin \alpha + \frac{M_{x^C}}{r_x + h_{zy}} \cdot f_{xr} + R_{zr} = 0
\]

(11)

\[
R_{y^C} = (G_{y^C} + G_{yzy}) \cdot \cos \alpha
\]

(12)

\[
M_{x^C} = -M_{yzy} + R_{zr} \left(r_x + \frac{h_{zy}}{2} \right)
\]

(13)

В выражениях (11-13), описаны зависимости \(R_{x^C} \) и \(M_{x^C} \) от неизвестных \(R_{zr} \) и \(M_{yzy} \). Введем константы, независимые от значений неизвестных:

\[
R_3 = T_{x^C}^c + (G_{x^C} + G_{yzy}) \cdot \sin \alpha + R_{yzy}
\]

\[
R_4 = r_x + \frac{h_{zy}}{2}
\]

С учетом введенных констант \(R_3 \) и \(R_4 \), выражения (11, 13) приняли вид:

\[
R_{x^C} = R_3 + \frac{f_{xr}}{R_4} \cdot M_{yzy}
\]

\[
M_{x^C} = -M_{yzy} + R_4 \cdot R_{zr}
\]

(14)

(15)

Рассмотрим среднюю часть расчетной схемы (Рисунок 5).

Как говорилось ранее, направление силы трения оболочки УСС в породе выработки меняется в зависимости от выбранной компоновки УСС. Системы уравнений для средней части расчетной схемы при разных компоновках будут также разными. Была составлена система уравнений для средней части расчетной схемы (Рисунок 5) для случая, когда внешняя оболочка УСС соприкосновена с головной секцией геосхема:

\[
R_x^r - R_x^c - G_x^ycc \cdot \sin \alpha - T_{ob}^{ycc} \cdot \sin \beta = 0
\]

\[
M_x^c + M_x^r - T_{ob}^{ycc} \cdot r_x \cdot \cos \beta = 0
\]

\[
R_y^r - R_y^c - G_y^ycc \cdot \cos \alpha - T_{ob}^{ycc} \cdot \cos \beta = 0
\]

(16)

После подстановки выражений (6-8, 12,14,15) система уравнений (16) приняла вид:

\[
R_{yzy} \cdot \cos \beta \cdot (1 - f_{xr} \cdot \tan \beta) + R_3 - \frac{f_{xr}}{R_4} \cdot M_{yzy} -
\] \[= -G_x^{ycc} \cdot \sin \alpha - T_{ob}^{ycc} \cdot \sin \beta = 0
\]

\[
-M_{yzy} + R_4 \cdot R_{zr} + M_1 \cdot R_{yzy} \left(r_x + \frac{h_{zy}}{2} \right) \cdot \cos \beta \cdot (f_{xr} + \tan \beta) -
\] \[= -G_x^{ycc} + G_y^{ycc} \cdot \cos \alpha - T_{ob}^{ycc} \cdot \cos \beta = 0
\]

(17)

Получилась система из трех уравнений с тремя неизвестными \(R_{yzy} \), \(R_{zr} \) и \(M_{yzy} \). Введем константы, независимые от значения неизвестных:

\[
R_3 = R_1 - R_3 - G_x^{ycc} \cdot \sin \alpha - T_{ob}^{ycc} \cdot \sin \beta
\]

\[
R_4 = R_3 - (G_y^{ycc} + G_y^{ycc} + G_x^{ycc}) \cdot \cos \alpha - T_{ob}^{ycc} \cdot \cos \beta
\]
М.І. Аксенов, В.І. Беляиков, М.Ю. Блацрук, А.А. Дронов // Вестник Кузбасского государственного технического университета. 2018. № 2. с.173-181

аналогично решению системы (16). Неизвестные, определяемые в системе уравнений для второго варианта компоновки были обозначены с добавлением апострофа (\(R'_{а}, R'_{в}, M'_{в} \)). Значения неизвестных для второго варианта компоновки равны:

\[
R'_{а} = \frac{R_{а} + T_{в}^{св} \cdot \cos \beta}{\cos \beta \cdot (f_{тп} + tg\beta)}
\]

\[
R'_{в} = \left[(R_{в} + T_{а}^{св} \cdot \cos \beta) \cdot \left(f_{тп} + tg\beta \right) + M_{в} \cdot \cos \beta \right] \cdot \frac{1}{R_{а}}
\]

\[
M'_{в} = \left[(R_{в} + T_{а}^{св} \cdot \cos \beta) \cdot (1 - f_{тп} \cdot tg\beta) + R_{а} + T_{а}^{св} \cdot \sin \beta \cdot \left(1 - 1 \right) \right] \cdot \frac{R_{а}}{f_{тп}}
\]

Заключение: Полученные выражения являются математической моделью взаимодействия УСС и геосредой и смежными системами геохода. Модель учитывает вариативность компоновок УСС. В выражениях (6-8, 11-13) определены силы взаимодействия УСС с секциями геохода. Установлено, что эти силы не зависят от компоновки УСС. В выражениях (19-21, 22-24) для обоих вариантов компоновки УСС определены реакция пород контора выработки на законтурные элементы геохода и вращающий момент, движимый трансмиссией. В дальнейшем полученные результаты позволяют:

- провести сравнительный анализ разных компоновок УСС;
- определить внутренние взаимодействия УСС (взаимодействие элементов УСС между собой).

СПИСОК ЛИТЕРАТУРЫ

REFERENCES

10. Dronov A.A., Blashhuk M.Ju., Timofeev V.Ju. Formirovanie trebovanij k uzu soprajzenija sekcij

Поступило в редакцию 01.05.2018
Received 01.05.2018