UDC 622.275

REDUCTION OF COAL LOSSES BY COMBINED OPEN CAST AND UNDER-GROUND MINING OF PERIFERAL RESERVES FROM THE PIT SIDE

Anferov Boris Alekseeевич, канд. техн. наук, ведущий научный сотрудник
Boris A. Anfyorov, C. Sc. in Engineering, Leading Researcher

Кузнецова Людмила Васильевна, канд. техн. наук, ведущий научный сотрудник
Lyudmila V. Kuznetsova, C. Sc. in Engineering, Leading Researcher

Federal Research Center of Coal and Coal chemistry, Siberian Branch, Russian Academy of Sciences, 10, Leningradsky Ave., Kemerovo, 650065, Russian Federation

Annotation:

Aктуальность работы. При достижении экономически обоснованного предельного коэффициента вскрытия горные работы на разрезах прекращают. В неразведанных по контурам разрезов, в бортах и на дне, безвозвратно теряются большие запасы угля. Для снижения этих потерь применяют комбинированное открытно-подземное оборудование "Highwall mining system". Проблема состоит в том, как поддерживать горную массу в требуемом состоянии, чтобы обеспечить безопасность и эффективность работы.

Цель работы. Разработать техническое решение для снижения потерь угля в неразведанных по контурам разрезов, обеспечивая безопасность и эффективность работы.

Методология проведения работы. Обзор существующих технологий и определение возможности их применения.

Результаты работы и область их применения. Разработка и внедрение новых технологий обеспечивает снижение потерь угля и повышение эффективности работы на разрезах.

Abstract:

The urgency of the problem. When an economically reasonable limit stripping ratio is reached, mining at the open-pit mines is stopped. In the subsoil beyond the design contours of the pits, in the sides and at the bottom, large reserves of coal are irretrievably lost. To reduce these losses, combined opencast and underground...
technologies of Highwall mining system are used to mine the peripheral reserves from the flank of the pit. In Russia, this technology is known on the basis of the equipment complex Superior Highwall Miners (SHM) under the brand KGRP (complex deep seam development). The main problems of this system and the reasons for stopping its use are large losses of coal in pillars (up to 60%), high accident rate of clearing faces due to their destruction and roof falling on the equipment.

The purpose of the study. To develop technical solutions to reduce the loss of coal in the subsoil of the design contours of the sections by cleaning-up the pillars and increasing the stability of the roof in driven workings.

Research methodology. The generalization and analysis of existing technologies for cleaning-up the coal reserves from the side of the pit and of the promising fields of their development.

Results of work and area of their application. Coal mining beyond the design contours of the pits can be performed using the KGRP technology. It is proposed to equip the continuous miner with additional equipment - a remote-controlled roof bolter. Roof bolting in the driven mine workings will make it possible: to mine adjacent pillars in seams of medium thickness; to implement slicing methodology in development of thick seams (over 4.8 m).

Summary. Reduction of coal losses is ensured by cleaning-up the peripheral reserves from the side of the pit by the KGRP system, equipped with a remotely controlled roof bolters excluding the presence of people in the mining area. Roof bolting allows us to eliminate the discontinuity of the roof rocks for a longer time and to ensure mining of pillars between workings for medium-thickness seams and slicing of thick seams.

Key words: mining of coal, open-pit mine, combined opencast and underground mining, Superior Highwall Miners, losses of coal, roof bolting, herm of opencast.

Введение

Инновационная направленность развития экономики России требует разработки и реализации геотехнологий, отвечающих мировому уровню и опережающих его [1]. Одним из критериев эффективности должна стать полнота извлечения полезных ископаемых из недр.

В России в 2018 г. добыто 420-425 млн. т угля (прогноз Минэнерго), из них 75% — открытым способом. При достижении экономически обоснованного предельного коэффициента вскрытия горные работы на разрезах прекращают. В недрах за проектными контурами разрезов, в бортах и на дне, безвозвратно теряются большие запасы угля. Например, в Кузбассе они превышают 450 млн. т, на разрезе Черниговском (Хакасия) — 70 млн. т [2, 3].

На завершающей стадии эксплуатации месторождений открытым способом или при переходе к подземному способу добываются открыто-подземная разработка, которая широко известна в мире и используется для доработки приконтуровых запасов угля по технологии «Highwall mining system» (модификации: Anger mining; Metec miner system; Continuous Highwall Mining (CHM); Longwall punch mining; Room/Bord-and-pillar punch mining) [4, 5]. В России известен вариант Metec miner system под брендом «Комплекс глубокой разработки пластов» (КГРП) [6, 7]. Оборудование поставлялось фирмами САТ и SHM [8-10].

Постановка задачи

Технология Anger mining (бурильно-сверлильная выемка) применяется при въезках тонких угольных пластов посредством выбуривания скважин с помощью бурильно-сверлильной установки с уступа борта разреза, между которыми остаются соразмерные щелики. В США добыча угля этим методом составляет 4% от общей добычи [11]. Близко расположенные многочисленные тонкие угольные пласти на центральных угольных месторождениях Аппалачей и Западной Вирджинии делают этот метод добычи предпочтительным и часто единственным возможным для извлечения оставшихся приконтуровых запасов угля после завершения открытых горных работ.

В России на разрезе «Юштанский» (ОАО «Воркутауголь») осуществляли въездку угля из пластов мощностью от 0,6 м до 1 м с углом падения до 18 градусов выбуриванием скважин на глубину до 260 м [12, 13]. Технология обусловливает большее эксплуатационные потери (до 70%) и имеет ограниченную область применения, так как не позволяет разрабатывать пласты средней мощности и мощные.

Система Continuous Highwall Mining (CHM) применяется для въезки с борта разреза пластов мощностью до 4,5 м путем проведения прямолинейных выработок (выемочных камер) с оставлением между ними соразмерных щеликов. Она известна в 2-х модификациях: Addcar system (комплекс оборудования включает: выемочную машину непрерывного действия, мобильные женточные конвейерные секции, пусковую установку, конвейер временного складирования угля, погрузчик) и Archveyor system, отличается от первой применением скребкового конвейера, транспортирующего уголь и обеспечивающего подачу выемочной машины на забой. Полностью автоматизированное управление системой CHM достигается с помощью передовых навигационных технологий, включая систему пассивного гамма-детектора по кровле и почве пласта, инклинометры, кольцевой
Схемы выемки полого угольного пласта средней мощности КГРП: а – вид сбоку; б – фронтальная проекция

Fig. 1. Schemes of excavation of a flat coal seam of medium thickness by the KGRP system: a - side view; b - frontal projection

лазерный гирокоп и программируемый логический контроллер [14]. В России технология не применялась и не получила широкого распространения из-за низкой надежности конвейерных секций.

Система Longwall punch mining впервые была применена в Австралии в 1990 г. для разработки пологих пластов в длинных очистных забоях. С борта разреза проводятся вентиляционный и конвейерный штреки. В глубине борта монтируется очистной механизированный комплекс, предназначенный для подземной отработки, и обратным ходом ведется выемка. Уголь по конвейерному штреку поступает на ленточный конвейер, смонтированный на уступе борта разреза, и транспортируется на склад. Добыча достигала 6 млн. т/год [15].

В отличие от этой системы, в технологии Room/Bord-and-pillar punch mining добычу угля ведут в коротках очистных забоях для высоких отраженных запасов (например, в охранных целиках) мобильными средствами механизации [15].

Преимущества этих двух систем: высокая производительность очистных забоях, не требуется проведения вскрывших капитальных выработок, сложной транспортной и вентиляционной систем. Однако требует соответствующего планирования и проектирования предприятия для сохранения и поддержания инфраструктуры разреза на поверхности в течение всего времени ведения подземных работ. Эта система не может применяться при неустойчивых породах борта разреза.

За рубежом наибольшее распространение получила технология Metec miner system на базе комплекса оборудования Superior Highwall Miners (SHM), с 2010 г. выпускаемого под маркой Viscus Highwall Miners (в США работает 64 комплекса) [16]. В России было построено 4 комплекса SHM-№ 28, 29, 34, 56, из которых 3 – в работе под брендом КГРП [6].

Комплекс оборудования состоит из пусковой установки, высокомощных машин непрерывного действия, двухнекровного транспортера, конвейера временного складирования угля и фронтального потуужника. КГРП устанавливается на открытой площадке, которая образуется в результате извлечения вскрышных пород по контуру блока разреза, предполагаемого к разработке с помощью данной системы. КГРП позволяет отрабатывать угольные пласти мощностью от 1,1 м до 4,8 м (губки отработки пласта по падению – 300 м) без присутствия людей в зоне ведения очистных работ [6].

В Кузбассе системой КГРП отрабатывали угольные пласти на участках открытых горных работ: ЗАО "Распадская", ЗАО "Разрез Кузнецкий", ООО "Разрез Южный" [6, 8, 13, 17].

Как показал российский и зарубежный опыт основной проблемой технологии КГРП являются большие потери угля в целиках (до 60 %, при
разработке пластов мощностью более 4,8 м эксплуатационные потери угля еще выше). Причиной, ограничивающей ее применение в России, стала высокая аварийность очистных забоев из-за разрушения целиков и обрушения кровли [17, 18]. Авторы считают своей задачей разработать технические решения, повышающие эффективность освоения угольных месторождений технологией КГРП с увеличением полноты извлечения запасов путем въемки целиков (для пластов средней мощности) и организации слоевой въемки (для мощных пластов) за счет повышения устойчивости кровли проводимых выработок возведением анкерной крепи.

Совершенствование технологии КГРП

Разработка полюгих угольных пластов средней мощности КГРП обусловливает повышенные потери угля в нелах из-за необходимости оставления соразмерных целиков между соседними выработками в связи с высокой вероятностью возникновения аварий очистного забоя из-за отсутствия крепления кровли в выработках. В Институте уголь ВУХ СО РАН разработана технологическая схема отработки приконтурных запасов угля с борта разреза, включающая в т.ч. анкерное крепление потолочного проводимых КГРП выработок (рис. 1) [19].

Для предварительной подготовки фронта очистных работ на уступе борта разреза по линии простирания на уровне почвы разрабатываемого пласта сооружают рабочую площадку. Начиная от края вскрытой части, угольный пласт условно делят на въемочные блоки, отделья их барьерными целиками. В первом въемочном блоке намечают усты планируемых к проведению выработок в соответствии с шириной исполнительного органа въемочной машины комплекса, между которыми планируют оставлять целики. Затем на рабочей площадке напротив устья планируемой выработки с порядковым номером I монтируют оборудование КГРП.

Въемку угля осуществляют проведением выработок прямоугольного сечения въемочной машины, подаваемой на угольный массив ставом двухшинкового транспортера. По мере углубления

Рис. 2. Схемы въемки мощного полого угольного пласта КГРП. а — вид сбоку при въемке верхнего слоя; б — вид сбоку при въемке нижнего слоя; в — фронтальная проекция

Fig. 2. Schemes of excavation of a thick flat coal seam by the KGRP system. a — side view during excavation of the upper layer; b — side view during excavation of the lower layer; c — frontal projection
выемочной машины в массив, осуществляют бурение шпуров в кровлю выработки и возведение анкеры (выемочная машина для этого снабжена буровыми станками, установленными по нормали к кровле пласта). Для установки анкерной крепи может быть использован анкероустановщик, конструктивно связанный с выемочной машиной, а для доставки комплекта анкеров — мобильный контейнер, перемещающийся в выработке по ставу или по почве выработки вдоль става. Все работы в очистном забое осуществляются без присутствия персонала, который осуществляет прямое управление оборудованием удаленю из диспетчерского пункта (например, с использованием технологий нейрокомпьютерного интерфейса и дополненной реальности) [20].

После проведения выработки под номером I, оборудование КГРП вытягивают за став и демонтируют. Затем их перемещают к устью планируемой выработки под номером II – осуществляют проведение выработки аналогичным образом, т.е. с анкерным креплением кровли.

На следующем этапе осуществляют выемку целика (III) между выработками под номерами I и II, но теперь без крепления кровли. Затем проводят выработку под номером IV с анкерным креплением кровли, а следом вынимают целник V между выработками III и IV. И так далее в том же порядке до тех пор, пока не будет погашен последний целик (IX) в выемочном блоке I.

После проведения выработки и погашения целиков в первом выемочном блоке, очистные работы в том же порядке переводят во второй выемочный блок и т.д.

При разработке мощных полигонов угольных пластов (более 5 м) допускаются повышенные потери угля в недрах из-за необходимости оставления низшей или верхней (в зависимости от физических свойств угля и пород кровли и почвы пласта) пачки вследствие ограниченности вынимаемой мощности. А также высокой вероятности возникновения аварий очистного забоя из-за значительного по площади обнажения пород кровли и отсутствию крепления в выработках.

В отличие от предыдущего технологического решения на уступе борта разреза (или на его дне) сооружают рабочую площадку на уровне примерно средней линии мощности пласта, деля, таким образом, мощный пласт на два слоя — верхний (уголь пласта) и нижний (уголь почвы) (рис. 2) [21].

После проведения выработки в слое у почвы пласта (включая анкерное крепление кровли) оборудование КГРП демонтируют, часть рабочей площадки напротив устья первой выработки углубляют до почвы пласта, возвращают оборудование КГРП и начинают углублять промежуточную выработку под номером I до почвы пласта под защитой анкерного крепления кровли.

После окончания очистных работ в выработке I оборудование переносят к устью второй планируемой выработки (II) на уровне почвы верхнего слоя (слой у почвы пласта), при этом между выработками I и II оставляют целник.

Заключение

Для доработки приконтурных запасов угля разреза существуют апробированные технологии. Наиболее эффективной и широко распространенной является система КГРП («Highwall Miners»), позволяющая разрабатывать пласти мощностью от 1,1 до 4,8 м без присутствия людей в зоне ведения очистных работ при устойчивых вмещающих породах, допускающих длительное и значительное по площади обнажение кровли (до 1000 м²). Увеличить время поддержания рабочего пространства выработки может позволить анкерное крепление кровли. Для этого необходимо модернизировать КГРП, оснастив его выемочную машину дистанционно управляемым анкероустановщиком. В этом случае будет обеспечена возможность безаварийной добычи и более полного извлечения угля из пластов средней мощности, разрабатываемых в один слой, а также из пластов большей мощности, разрабатываемых слоями.

СПИСОК ЛИТЕРАТУРЫ

6. Нецветеев А.Г., Григорян А.А., Пружина Д.И. Развитие технологии безводной угледобычи с

7. Филатов П.Ю. [и др.] Технология «опережающей отработки» угольных пластов с применением комплекса глубокой разработки пластов // Вестник НЦ ВостНИИ. 2017. 2. С. 42-49.

17. Нечетев А.Г., Григорян А.А., Пружина Д.И. Геодинамика кровли пласта 67 Талдинского месторождения при отработке его комплексом КГРП // Уголь. 2014. № 11. С. 73-77.

19. Пат. 2436953 Российская Федерация, МПК E21C 41/00. Способ открыто-подземной разработки пологого угольного пласта средней мощности // Федорин В.А., Шахматов В.Я., Анферов Б.А., Кузнецова Л.В.; заявитель и патентообладатель ИУУ СО РАН; № 2010114788; заявл. 13.04.2010. Опубл. 20.12.2011, бюл. № 35.

21. Пат. 2435956 Российская Федерация, МПК E21C 41/00. Способ открыто-подземной разработки мощного полого угольного пласта / Федорин В.А., Шахматов В.Я., Анферов Б.А., Кузнецова Л.В.; заявитель и патентообладатель ИУУ СО РАН; № 2010118084; заявл. 05.05.2010. Опубл. 10.12.2011, бюл. № 34.

REFERENCES

3. Romashkin Yu.V. Dorabotka zapasov kar'ernykh poley ugoľnykh mestorozhdeniy [Finishing coal

Поступило в редакцию 19.02.2019
Received 19 February 2019