УДК 661.21 (66.061)

УТИЛИЗАЦИЯ СЕРОСОДЕРЖАЩЕГО ОТХОДА (ШЛАМ БИТУМА) ОБРАЗУЮЩЕГОСЯ ПРИ ПРОИЗВОДСТВЕ СЕРНОЙ КИСЛОТЫ

DISPOSAL OF SULFUR-CONTAINING WASTE (BITUMEN SLUDGE) FORMED BY PRODUCTION OF SULFURIC ACID

Галузий Наталья Васильевна, аспирант, e-mail: gnv2@azot.kuzbass.net
Natalia V. Galuziy, postgraduate student

Черкасова Татьяна Григорьевна, доктор хим. наук, профессор, e-mail: ctg.htrv@kuzstu.ru
Tatiana G. Cherkasova, Dr. Sc. in Chemistry, Professor

Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000, Россия, г. Кемерово, ул. Весенняя, 28
T.F. Gorbachev Kuzbass State Technical University, 28 street Vesennyaya, Kemerovo, 650000, Russian Federation

Аннотация:
Актуальность работы: В статье представлен краткий обзор возможных способов утилизации серосодержащего отхода, образующегося при производстве серной кислоты. На производстве данный отход получил название шлам-битум или кек серный. Кек серный характерен при производстве серной кислоты из комовой, газовой или чешуйчатой серы. Образуется отход лишь на первой стадии производства кислоты - плавлении и фильтрации серы, от нижнего края змеевика и до днища плавильной печи. Очистка от монолита производится вручную отбойным молотком, что связано с большими трудозатратами. А образующийся отход, содержащий серу, относится к IV классу опасности, является нецелесообразным, для него характерно самовозгорание, в связи с чем, утилизация на полигонах промышленных отходов не подлежит. Соответственно, это приводит к его накоплению и как следствие к загрязнению окружающей среды. При производстве серной кислоты из жидкой серы, за счет чистоты сырья, шлам-битум не образуется.

Ключевые слова: шлам-битум, кек серный, отход производства, сера, серная кислота, бетоны, экстракция, серобетон.

Abstract:
The urgency of the discussed issue: The article presents a brief review of possible methods for utilization of sulfur-containing waste generated during the production of sulfuric acid. On production, this waste is called sludge-bitumen or sulfur cake. Gray cake is typical for the production of sulfuric acid from lumpy, gaseous or flaked sulfur. Waste is formed only at the first stage of acid production - melting and filtration of sulfur, from the lower edge of the coil to the bottom of the melter. Cleaning of the monolith is done manually with a jackerhammer, which is associated with large labor costs. And the formed waste containing sulfur belongs to the IV class of danger, is flammable, it is characterized by spontaneous combustion, and therefore, it is not recyclable at landfills of industrial wastes. Accordingly, this leads to its accumulation and, as a consequence, to environmental pollution. In the production of sulfuric acid from liquid sulfur, due to the purity of the raw materials, sludge-bitumen is not formed.

Key words: sludge bitumen, sulfuric cake, production waste, sulfur, sulfuric acid, concrete, extraction, sulfur concrete.

Статья посвящена поиску возможных способов утилизации отхода производства серной кислоты - шлам битума.

При производстве серной кислоты первой стадией является плавление и фильтрация с последующим сжиганием и фильтрацией комовой, газовой
или чешуйчатой серы и последующим её сжи-
нением с образованием диметила серы [1,3].
Если при производстве серной кислоты из жи-
дой серы, за счет чистоты сырья (данные сырье уже
на стадии производства подлежит очистке) отхода в плавильных не образуется, то на первой стадии производства серной кислоты из сырья по ГОСТ
1271.1-93 Серная техническая. Технические условия:
комовой, газовой или чешуйчатой серы, при плав-
лении и фильтрации в плавильнях образуется
монолит (отход производства) — кек серный. Со-
держание серы в нем варьирует от 27% до 76%.
Данный отход, относящийся к IV классу опасно-
сти, не востребован на рынке, характеризуется спо-
собностью к самовозгоранию и запрещен к захоро-
нению на полигонах промышленных отходов, что
приводит к его накоплению и как следствие к за-
грязнению окружающей среды.
Согласно литературным данным утилизация
кека может проводиться в двух направлениях:
- первое — переработка кека с получением сво-
бодной серы;
- второе — переработка кека без выделения
из него серы, а именно получение бетонов/серебето-
нов.
Переработка кека с получением свободной
серы
Первое направление считается более трудоем-
ким, а учитывая стоимость и количество серы на
рынке довольно не перспективным. Однако, учи-
тывая то, что второе направление в нашей стране
изучается с начала 80-х годов 20 века, но так и не
востребовано, а запасы отходов растут, то получе-
ние свободной серы и возврат её в цикл производ-
ства имеет место быть.
Выделение свободной серы из кека можно осу-
ществить известными методами, которые исполь-
зуются при добыче самородной серы из руд: тер-
мическим, парохимическим, флотационным, экстрак-
ционным и др.[4-15]. В данном случае выбор воз-
можного варианта обусловлен рядом факторов: экономичность процесса переработки, величина за-
пасов кека, скорость его накопления (что пропор-
ционально производственной серной кис-
лоты) требования чистота и безопасность процесса
утилизации, и многое другое.
Описание полученных результатов
Учитывая изученный материал, был проведен
режиссуритий по изучению процесса выделения
серы из кека техническим методом с подводом тепла через стенку аппа-
рата. Сущность данного метода заключается в
испарении серы без доступа кислорода, конденса-
ции её паров с получением продукта в жидким или
твердым состоянии. Исследования производились на
ла-
бораторной установке, состоящей из реактора — ис-
порителя и узла конденсации, с дальнейшим сбором
серы при температуре в реакторе — испарителе
(400-450)°С, в конденсаторе — (142-145)°С. В ре-
зультате испытаний в лабораторных условиях до-
казана возможность термического извлечения серы
из шлам-битума с подводом тепла через стенку ре-
актора. Без учаёт потерь выделенной серы, допу-
щенных из-за несовершенства узла конденсации
лaborаторной установки, степень извлечения серы
составляет 73%, с содержанием серы 99,67%. В пе-
ресчете на годовую норму образования отхода
производства серной кислоты (при мощности про-
изводства 20 тонн в год) из шлама — битумы ис-
пытанный состав может быть выделен и возвра-
щено в смеси с исходной на стадию плавления не
менее 273,8 тонн сырьё.
В дальнейшем, были изучены возможные спосо-
бы извлечения серы из шлам — битума методом
экстракции. Согласно литературным данным [4-
15], экстракционные методы основаны на раство-
рении серы как органическими, так и неорганичес-
скими растворителями, учитывая, конечно же спе-
цифические свойства этих растворителей. В мировой
практике давно уже изучены различные спосо-
бы экстракции серы из руд с помощью сероугле-
рода, бензола, ароматических углеводородов и т.д.
Основными стадиями экстракционного извлечения
серы из кека растворителем: экстракция, фильтра-
ция, отгонка растворителя и очистка серы и осадка
после экстракции. Растительное после отделения
серы возврашаются в процесс.
Учитывая специфику производства на Кеме-
ровском АО «Азот», наиболее перспективными
экстрагентами были выбраны диметилформамид и
бензол. По маноплоекой сероёмкости при повы-
шенной температуре, высокой температурной за-
висимости растворимости серы в них, эти про-
dukты не являются дефицитными для КАО «Азот».
Данные методы были нами изучены и описаны на
нее. Была определена возможность экстракцион-
ного извлечения серы из кека, отработаны опти-
мальные условия извлечения серы как диме-
тилформамидом (ДМФА), так и бензолом. Выход
извлеченной серы составил:
1. 84% от содержания в исходной пробе, в ка-
честве экстрагента применялся ДМФА. При этом
состав серы по содержанию основного вещества
(маассовая доля серы Смл — 99,96%) и содержанию
золь и органических примесей соответствует качеству
сери сера 9995 и 9990 согласно ГОСТ 1271.1-
93.
2. (69—91)% от содержания в исходной пробе, в ка-
честве экстрагента применялся бензол. При этом
состав серы по содержанию основного вещества
содержанию золь и органических примесей соответ-
ствует качеству сера 9995 согласно ГОСТ 1271.1-
93.
Сравнительный анализ представленных выше
технологий показал, что наиболее технологичным
(учитывая высокую степень извлечения серы, ско-
рость экстракции, качество извлеченной серы,
полноту регенерации растворителя) является вто-
рое направление — экстракция серы из кека бензо-
лом.
Переработка кека без выделения из него
Таблица 1. Обобщённые результаты анализа полученных бетонов.

<table>
<thead>
<tr>
<th>№ замеса</th>
<th>Наименование образца</th>
<th>Рецептура Загрузки Ц : П : В : КС*</th>
<th>Добавка кека серного % от массы смеси</th>
<th>Результаты анализа качества</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 и 4 (контрольный)</td>
<td>1/1 и 1/2 (см. зл.)</td>
<td>1 : 2,4 : 0,6 : 0</td>
<td>-</td>
<td>Среднее значение прочности, R, кгс/см²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2/1 и 2/2 (см. зл.)</td>
<td>1 : 2,4 : 0,6 : 0,21</td>
<td>5</td>
<td>107,7</td>
</tr>
<tr>
<td>5</td>
<td>2/1, 2/2, 2/3, 2/4</td>
<td>1 : 2,4 : 0,6 : 0,42</td>
<td>10</td>
<td>106,4</td>
</tr>
<tr>
<td>3</td>
<td>3/1 и 3/2 (см. зл.)</td>
<td>1 : 2,4 : 0,76 : 0,84</td>
<td>17</td>
<td>81,8</td>
</tr>
</tbody>
</table>

КС* - кек серный.

Материалы дозировались по массе с погрешностью не более 1%.

Ввиду отсутствия лабораторного смесителя принудительного или гравитационного действия, приготовление опытных замесов производили вручную на предварительно увлажнённом противе в течение 5 минут. Сначала перемешивали сухие материалы, а затем постепенно добавляли расчётное количество воды. Следует отметить, что при изготовлении образцов №1, 3/1 и 3/2 с максимальной добавкой кека серного (17%), выбранного количества воды не хватило для достаточного увлажнения смеси и количество воды было увеличено до соотношения Ц: П: В = 1: 0,76.

По окончании перемешивания, раствор заливали в разъёмные металлические формы размером (10×10×10) см, установленные на лабораторный аппарат для встряхивания АБУ-6с, обеспечивающий возвратно-поступательное движение платформы со скоростью 150 кол./мин. Через 2 суток образцы были вынуты из формы и переданы для испытаний в ЦТД. Результаты контроля качества контрольных (1/1, 1/2) и экспериментальных (2/1, 2/2 и 3/1,3/2) образцов после 28-суточного хранения представлены в таблице 1.

Описание полученных результатов

Сравнительный анализ качества образцов бетона показал, что образцы, полученные в замесах №2 и №5, с добавкой 5 и 10% кека серного от массы смеси имеют более высокие прочностные характеристики на (8,9 - 8,2)% ср., чем контрольные образцы. Дальнейшее увеличение добавки отхода до 17% приводит к снижению прочности. Так в замесе №3 получен бетон с прочностью на 17% ниже контрольного образца.

Выводы по данному направлению

Образцы бетона, полученные с добавкой 5 и 10% кека серного от массы смеси (замес №2 и 5) имеют прочностные характеристики на 8,9 и 8,2%, соответственно, выше контрольного образца.
Дальнейшее увеличение добавки отхода до 17% приводит к снижению прочности.

Получение серобетонов

Продолжая изучать возможные способы утилизации серосодержащих отходов, невозможно было не обратить внимание на технологии сульфидных композиционных материалов [22-25]. На сегодняшний момент, применение серы для производства инновационных строительных (композиционных) материалов, таких как серобетон и изделия из него, а также сероасфальтобетон, является наиболее перспективным. Стройматериалы с добавлением серы обладают высокими прочностными характеристиками, повышенной износостойкостью, коррозионной и химической стойкостью, низкой водопроницаемостью, большой устойчивостью к резким перепадам температуры, а также к механическим и экологически безопасны. Эти выводы сделаны на основе опыта применения этих материалов, начиная еще с 1970-х годов, в США, Канаде, Франции и Польше. Если возможность получения серобетонов с использованием серы с модифицирующими добавками в качестве вяжущего хорошо изучена [22-29], то вопрос о возможности получения серобетона с использованием в качестве одного из компонентов кека представляется изучением.

Так как минеральные компоненты, такие как кальций и сульфаты в кеке содержатся в близком к технологическому соотношению, а органических соединений незначительное количество, то можно сделать вывод о возможности использовать кека для производства композиционных материалов строительного назначения.

Результаты рентгенографического исследования, проведенного Казанским технологическим университетом, с использованием дифрактометра ДРОН-3 (3 CuKα-излучения), серный кек состоит из кристаллической фазы, представленной мономинеральной серой, тауэритом, водными сульфатами железа, а именно ромбоклазом и рермитом, кварцем и сульфатом кальция. Что касается химического состава, то нужно отметить, что он не стабилен в плане процентного содержания компонентов, но основными компонентами является: S, Fe, Mg, Na, Al, Co, C.

Результаты проведенных исследований показывают, что сероасфальтобетон является перспективным строительным материалом.

СПИСОК ЛИТЕРАТУРЫ

REFERENCES

