
УДК 541.183

ВЛИЯНИЕ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА НАПОЛНИТЕЛЕЙ НА СВОЙСТВА СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЯНА

INFLUENCE OF GRANULOMETRIC COMPOSITION OF FILLERS ON PROPERTIES OF ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE

Пилин Максим Олегович\(^1,2\),
старший преподаватель, e-mail: pilinn@mail.ru
Maxim O. Pilin\(^1,2\), Senior lecturer
Тергеева Татьяна Николаевна\(^1\),
dоктор техн. наук, профессор, e-mail: teryaeva-12@mail.ru
Tatyana N. Teryaeva\(^1\), Dr. Sc. in Engineering, Professor
Исмагилов Зинфер Рашатович\(^1,2\),
Член-корр. РАН, доктор хим. наук, профессор, директор, e-mail: zinfer1@mail.ru
Ismagilov Zinfer R.\(^1,2\), Corresponding Member of RAS, Dr. Sc. in Chemistry, Professor, Director

\(^1\)Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000, Россия, г. Кемерово, ул. Весенняя, 28
\(^2\)T.F. Gorbachev Kuzbass State Technical University, 28 street Vesennyaya, Kemerovo, 650000, Russian Federation

Аннотация:
В статье приведено исследование влияния размеров частиц углеродных и минеральных наполнителей на плотность полимерных композиционных материалов (ПКМ) на основе сверхвысокомолекулярного полиэтилена (СВМПЭ) для получения деталей и элементов конструкций, подвергающихся ударной нагрузке и истиранию в машиностроении (цилиндры, зубчатые передачи, опорные втулки, направляющие и др.). Показано влияние гранулометрического состава наполнителя на технологические свойства ПКМ. Композиции на основе СВМПЭ получены смещением порошкообразных компонентов, прессованием таблеток и последующей их термообработкой. Оценка влияния наполнителей проводилась по плотности полученных образцов в соответствии с ГОСТ-15139. Оптимальным наполнителем при размерах частиц менее 0,05 мм и концентрации 0,1% масс. является углеродный наполнитель – графит. При более крупных размерах частиц (от 0,05 мм до 0,2 мм) наибольшее влияние на СВМПЭ оказывает тальк, обладающий пластичной структурой и обеспечивающий более плотную упаковку полимерных молекул в ПКМ.

Ключевые слова: СВМПЭ, сверхвысокомолекулярный полиэтилен, полимерные композиты, наполнители, технологические свойства композитов.

Abstract:
The article presents a study of the influence of the particle size of carbon and mineral fillers on the density of polymer composite materials (PCM) based on ultrahigh molecular weight polyethylene (UHMWPE) to obtain parts and structural elements subjected to shock loading and abrasion in mechanical engineering (rollers, gears, support sleeves, guides, etc.). The influence of the granulometric composition of the filler on the technological properties of PCM is shown. Compositions based on UHMWPE are obtained by mixing powder components, pressing tablets and their subsequent heat treatment. Evaluation of the effect of fillers was carried out on the density of the samples in accordance with GOST-15139. The optimal filler with particle sizes less than 0.05 mm and a concentration of 0.1% by weight is graphite, a carbon filler. With larger particle sizes (from 0.05 mm to 0.2 mm), talc has the greatest effect on UHMWPE, which has a lamellar structure and provides a denser packing of polymer molecules in PCM.
Введение

Практически неограниченное число сочетаний различных наполнителей с полимерами связующими и изменение количественных соотношений компонентов позволяют получать материалы с комплексом необходимых эксплуатационных свойств. К наполнителям предъявляются требования исходя из того, какие свойства материала желательно получить в разрабатываемом изделии [1-2].

К наполнителям предъявляют общие требования: способность совмещаться с полимерами и диспергироваться в них с образованием однородных композиций, хорошая смачиваемость расплавов полимера, стабильность свойств при хранении, а также при переработке и эксплуатации материалов. Величина диаметра волокон или частиц наполнителя также играет важную роль: чем меньше размер частиц, тем больше поверхность соприкосновения его с полимером и тем сильнее связь между частицами наполнителя и полимера. Эффективным и экономичным способом улучшения физико-механических и эксплуатационных характеристик полимерных материалов, снижения энергоэффективность при переработке, износа оборудования за счет снижения характеристики вязкости, снижения внутренних напряжений является метод легирования (структурной модификации) химически не связанными добавками, вводимыми в небольших количествах на стадии приготовления материала или при его переработке [3-5]. Однако необходимо учитывать предел дисперсности наполнителя. Чем больше наполнителей для термопластов должны иметь шероховатую поверхность, так как это обеспечивает механическое сцепление наполнителя с полимером [6-9].

Наполнители пластифицированных термопластов должны обладать минимальной пористостью, так как в противном случае они могут поглощать содержащийся в пластмассе пластикатор. Вместе с тем наполнители не должны растворяться в пластикаторах, разлагаться при данной температуре переработки и выделять летучие продукты, содержать влагу, катализирующие разложение полимера, изменять цвет и окрашиваться в процессе переработки, ухудшать перерабатываемость системы, сильно увеличивать вязкость и образованность композиций [10-14].

Промышленные наполнители имеют широкие границы гранулометрического состава, что не всегда позволяет добиться необходимого результата модификации полимера за счет введения наполнителя.

Целью работы является выбор эффективного гранулометрического состава минеральных и углеродных наполнителей для СВМПЭ, обеспечивающего максимальную плотность композиции.

Объекты исследования

Сверхвысокомолекулярный полиэтилен с ММ 610 000 а.е.м., свойства которого представлены в таблице 1.

Наполнители: порошкообразные углеродные – графит и технический углерод, минеральные – тальк и дисульфид молибдена с гранулометрическим составом:

1 – менее 50 мкм;
2 – от 50 до 100 мкм;
3 – от 100 до 200 мкм.

Таблица 1. Технологические свойства СВМПЭ

<table>
<thead>
<tr>
<th>СВМПЭ</th>
<th>Размеры частиц, мкм</th>
<th>$\rho_{\text{ст}}$, г/см3</th>
<th>Твердость, МПа</th>
<th>Водопоглощение, %</th>
<th>Содержание влажи, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>порошок</td>
<td>20–400</td>
<td>0,960</td>
<td>-</td>
<td>0,01</td>
<td>0,059</td>
</tr>
<tr>
<td>таблетка</td>
<td>-</td>
<td>0,799</td>
<td>75±5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Таблица 2. Свойства наполнителей

<table>
<thead>
<tr>
<th>Наименование</th>
<th>$\rho_{\text{ст}}$, г/см3</th>
<th>Содержание влаги, %</th>
<th>$V_{\text{уд}}$, 10^3, м3/кг</th>
<th>Зольность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Графит (марки ГК-3) ГОСТ 17022-81</td>
<td>2,04</td>
<td>0,065</td>
<td>2,1</td>
<td>-</td>
</tr>
<tr>
<td>Дисульфид молибдена (MoS$_2$) ГОСТ ТУ 48-19-133-90</td>
<td>4,83</td>
<td>0,210</td>
<td>2,09</td>
<td>-</td>
</tr>
<tr>
<td>Тальк ГОСТ 19729-74</td>
<td>1,80</td>
<td>0,206</td>
<td>2,65</td>
<td>-</td>
</tr>
<tr>
<td>Технический углерод (марки п-330) ГОСТ 7885-86</td>
<td>1,76</td>
<td>0,276</td>
<td>2,9</td>
<td>Не более 0,45</td>
</tr>
</tbody>
</table>
Рис. 1. Зависимость плотности ПКМ от концентрации наполнителя для частиц размером менее 50 мкм

Fig. 1. The dependence of the density of the PCM on the concentration of the filler with a particle size less than 50 microns

Рис. 2. Зависимость плотности ПКМ от концентрации наполнителя с размерами частиц от 50 до 100 мкм

Fig. 2. The dependence of the density of the PCM on the concentration of the filler with a particle size from 50 to 100 microns

Характеристики промышленных партий приведены в таблице 2.

Методы исследования
Методика получения ПКМ включала в себя сушку наполнителей, смешение СВМПЭ с наполнителями, прессование таблеток из полученных
смесей и термическую обработку (ТО) таблеток.

Сушка наполнителей проводилась в термощафу при температуре 105°С в течение 30 мин. Смешение СВМПЭ и наполнителя осуществляли в смесительной камере лопастного смесителя фирмы Brabender и при интенсивном перемешивании (35 об/мин). Прессование проводили в пресс-форме одностороннего прессования при давлении 250 МПа и выдержке 2 мин. Полученные таблетки термообрабатывались (спекались) в термощафу при температуре 150°С в течение 30 мин. Нормализация образцов после термообработки составляла 24 часа.

Определение плотности образцов ПКМ проводилось по стандарту ГОСТ 15139-69 методом обмера и взвешивания.

Плотность определялась до и после термообработки ПКМ.

Результаты исследования

Полученные экспериментальные данные представлены в виде зависимостей плотности композиционных материалов от содержания определенной фракции наполнителя и наличия или отсутствия ТО на рис. 1-3.

Проведенные исследования показывают, что:

1. При введении в полимер наполнителя увеличивается плотность полученных образцов за счет введения более плотного материала в композицию, а также заполнения свободного пространства между глобулами полимера дисперсным наполнителем.

2. Термообработка ПКМ СВМПЭ с дисперсными наполнителями приводит к увеличению плотности в связи со структурированием полимера и образованием более упорядоченной, кристаллической структуры.

3. ПКМ с графитом имеет наибольшую плотность из рассмотренных композиций при содержании наполнителя 0.1% масс. и размере частиц менее 50 мкм (рис. 1), что указывает на наличие взаимодействия полимера с наполнителем и образование более плотной упаковки макромолекул. Это подтверждает процесс «легирования» полимеров малыми концентрациями и малым размером частиц.

4. На рис. 2 и рис. 3 приведены данные по плотности ПКМ, содержащие более крупные фракции наполнителя. Плотность ПКМ так же увеличивается, но лучшее взаимодействие можно отметить для ПКМ с тальком, которые имеют максимальное значение плотности. Это обусловливается тем, что структура талька имеет пластичную форму с наименьшим количеством пор, и как следствие - минимальное содержание воздуха как в наполнителе, так и в ПКМ. В отличие от углеродных наполнителей, у которых с увеличением размера частиц содержание воздуха в порах так же увеличивается и влияет на прочностные характеристики композитов.

Заключение

Плотность полимеров и ПКМ на их основе является универсальной характеристикой материала, определяющей как эксплуатационные, так и технологические и структурные свойства. Чем выше плотность полимера и ПКМ, тем более плотную упаковку имеют макромолекулы полимера, более...
упорядоченную структуру надмолекулярные образованные, что в свою очередь обеспечивает увеличение прочностных показателей (разрушающего напряжения при разрыве, твердости, жесткости и др.). С этой точки зрения полученные нами данные показывают, что исследованные наполнители влияют на плотность ПКМ СВМТЭ, позволяя регулировать их технологические и прочностные характеристики. С целью получения ПКМ инженерно-технического назначения, обладающих повышенной прочностью, теплостойкостью можно рекомендовать следующие наполнители: графит с размером частиц менее 50 мкм при содержании 0,1% и тальк для частиц наполнителя с гранулометрическим составом от 50 до 100 мкм и от 100 до 200 мкм при содержании от 0,1% до 5%.

СПИСОК ЛИТЕРАТУРЫ

2. Балгей, Н.Н. Образование сшитого полиэтилентиолоксана в присутствии дисперсных свинца и железа // Балгей Н.Н., Брык М.Т. - Укр.хим.журн.,1979,42, №1
8. Беданков, А.Ю. Свойства полимерных нанокомпозитов Пластиначеские массы. Беданков А.Ю., Борисов В.А., Микитасевич А.К. и др. – №5. – 2007
11. Галибес, С. С. Сверхвысокомолекулярный полиэтилен. Тенденции и перспективы Вестник казанского технологического университета / С.С. Галибес, Р.З. Хайруддин, В. П. Архиреев 2008, №2, с. 50-55.
12. Сабсай, О.Ю. Технологические свойства термопластов (обзор) / Сабсай О.Ю., Чалая Н.М. // Пластические массы, 1992, № 1 — с. 5-13
14. Панин, С.В. Трение и изнашивание сверхвысокомолекулярного полиэтилена, модифицированного высокозернистой обработкой поверхности электронным пучком / С.В. Панин, Кориненко Л.А., Т. Пудин и др. // Трение и смазка в машинах и механизм, 2011, № 12 — с. 26-31

REFERENCES

2. Balgay, N. N. Obrazovanie shitogo polidimetilsiloksana v pristusstve dispersnnyh svinca i zheleza. / Baglay N. N., Bryk M. T. - Ukhr. khim. zhurn., 1979,42, №1

Поступило в редакцию 22.03.2019
Received 22 March 2019