DOI: 10.26730/1999-4125-2020-6-74-81

УДК (66.092-977+66.092.097+66.094.25):662.65

ОЖИЖЕНИЕ БАРЗАССКИХ УГЛЕЙ В ПРИСУТСТВИИ КАТАЛИТИЧЕСКИХ ДОБАВОК НА ОСНОВЕ ПЕРЕХОДНЫХ МЕТАЛЛОВ В УГЛЕКИСЛОТНОЙ И ВОДОРОДНОЙ СРЕДАХ

LIQUEFACTION OF BARZAS COALS IN THE PRESENCE OF TRANSITION METAL-BASED CATALYTIC ADDITIVES IN CARBON DIOXIDE AND HYDROGEN ENVIRONMENTS

Ушаков Константин Юрьевич¹, ст. преподаватель, e-mail: as1sa2@mail.ru Копstantin Y. Ushakov¹, Senior Lecturer Петров Иван Яковлевич², канд. хим. наук, научный сотрудник, e-mail: ipetrov@kemcity.ru Ivan Y. Petrov¹, C. Sc. in Chemistry, Research Scientist, Зябрев Александр Сергеевич¹, студент, e-mail: sany9841@gmail.com Alexander S. Zyabrev¹, student, Трясунов Борис Григорьевич^{1,2}, доктор хим. наук, профессор, e-mail: btryasunov@mail.ru Boris G. Tryasunov^{1,2}, Dr. Sc. in Chemistry, Professor Богомолов Александр Романович^{2,3}, доктор техн. наук, профессор, e-mail: barom@kuzstu.ru Alexander R. Bogomolov^{2,3}, Dr. Sc. in Engineering, Professor

¹Кузбасский государственный технический университет имени Т.Ф. Горбачева, 650000, Россия, г. Кемерово, ул. Весенняя, 28

¹ T. F. Gorbachev Kuzbass State Technical University, 28, Vesennyaya St., Kemerovo, 650000, Russian Federation

²Институт углехимии и химического материаловедения Федерального исследовательского центра угля и углехимии СО РАН, 650000, Россия, г. Кемерово, Советский проспект, 18 ²Institute of Coal Chemistry & Chemical Materials Science, Federal Research Center of Coal & Coal Chemistry, SB RAS, 18 Sovietsky Ave., Kemerovo 650000, Russian Federation

³Институт теплофизики им. С.С. Кутателадзе СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Лаврентьева, 1

³Kutateladze Institute of Thermophysics, SB RAS, 1 Lavrentiev Ave., Novosibirsk, 630090, Russian Federation

Аннотация:

Изучено влияние природы и концентрации каталитических добавок соединений переходных металлов на процессы ожижения двух форм барзасских сапромикситов [плитчатой модификации («плитки») и продукта ее выветривания («рогожки»)] в углекислотной и водородной средах. Эксперименты по ожижению барзасских углей проводились в микроавтоклаве (с рабочим объемом ~20 см³) при $T = 475 \,^{\circ}$ и $P ~7-9 \,^{\circ}$ МПа в присутствии соединений железа (0,3-7,0 масс.% Fe₂O₃) и молибдена (0,5-7,0 масс.% MoO₃), которые предварительно наносились на образцы угля методом пропитки из водных растворов солей соответствующих металлов; продолжительность термообработки составляла ~20 мин. Для сравнения аналогичные эксперименты были также проведены с механическими смесями барзасского угля с добавками промышленного алюмокобальтмолибденового катализатора гидроочистки (2,4-20,0 масс.% AlCoMo-кт). Показано, что в присутствии различных каталитических добавок (Fe₂O₃, MoO₃, AlCoMoкатализатор) наблюдается снижение выхода газообразных продуктов в обеих исследованных средах. При этом выходы газов при ожижении образцов на основе барзасской «рогожки» были заметно выше, а выходы жидких продуктов существенно ниже, чем в случае образцов на основе «плитки» (особенно в

75

атмосфере водорода). Концентрационные зависимости суммарных выходов продуктов ожижения (мальтенов и асфальтенов) в среде водорода от содержания исследуемых каталитических добавок имели экстремальный характер с максимальными значениями в области ~0,5 масс.% MoO₃, ~2-3 масс.% Fe₂O₃ и ~11 масс.% AlCoMo-кт. Наибольший выход мальтенов и асфальтенов (до 36-37 масс.% против ~29 масс.% в случае исходного угля) был получен при гидроожижении образцов плитчатого барзасского угля в присутствии добавок соединений железа (~2-3 масс.% Fe₂O₃).

Ключевые слова: Барзасские угли, термообработка, ожижение, катализатор, мальтены, асфальтены, элементный анализ, CO₂, H₂

Abstract:

Influence of the nature and concentration effects of transition metal-based catalytic additives on the liquefaction processes of two Barzas sapromixite forms [namely, a tile-like modification ("tile") and a product of its weathering ("gunny-like coal")] have been studied in carbon dioxide and hydrogen media. Experiments on liquefying Barzas coals were carried out in a micro-autoclave (with a working volume of ~ 20 cm³) at $T = 475 \,^{\circ}$ C and $P \sim 7-9$ MPa in the presence of iron and molybdenum compounds (0.3-7.0 wt. % Fe₂O₃ and 0.5-7.0 wt% MoO_3 , respectively), which were preliminarily supported on the coal samples by impregnation from aqueous solutions of corresponding metal salts; the duration of thermal treatment was ~ 20 min. For comparison, similar experiments were also performed with mechanical mixtures of Barzas coal and the additions of commercial cobaltmolybdenum-alumina hydrotreating catalyst (2.4-20.0 wt. % AlCoMo catalyst). It has been shown that in the presence of various catalytic additives (Fe_2O_3 , MoO_3 , AlCoMo catalyst), a decrease in the yield of gaseous products was observed for both media investigated. At the same time, the gas yields during liquefaction of samples based on the "gunny-like coal" were noticeably higher, and the yields of liquid products were significantly lower than those of the samples based on the "tile-like" coal (especially, in a hydrogen atmosphere). The concentration dependences for the total yields of liquefaction products (maltenes and asphaltenes) in a hydrogen atmosphere on the content of the catalytic additives studied had an extreme character with maximum values in the range of ~ 0.5 wt.% MoO₃, ~2-3 wt.% Fe₂O₃, and ~11 wt.% AlCoMo catalyst. The highest yield of maltenes and asphaltenes (up to 36-37 wt.% vs. ~29 wt.% for additive-free coal) was obtained during the liquefaction of Barzas tile-like coal samples in the presence of iron compounds ($\sim 2-3$ wt.% Fe₂O₃) in a hydrogen environment.

Key words: Barzas coals, thermal treatment, liquefaction, catalyst, maltenes, asphaltenes, elemental analysis, CO₂, H₂

Введение

Одним из перспективных решений проблемы расширения сырьевой базы для производства углеводородов является широкое внедрение в промышленности технологий прямого ожижения низкометаморфизованных углей с повышенным содержанием водорода [1-4]. К такому виду сырья относятся, например, сапропелитовые угли, в сапромикситы частности Барзасского месторождения (Россия, Кузбасс). Эти угли содержат достаточно большое количество водорода (до 9-10 масс. % на органическую массу угля) и характеризуются высоким выходом летучих продуктов (> 50-60 масс. %) [5], а в неизотермических условиях уже при 425-450°С достаточно легко растворяются в гидроароматическом растворителе (тетралине) с выходом продуктов ожижения (асфальтенов, смол и масел) ~60-80 % от органической массы угля [6]. При этом значения параметров гидрируемости барзасских сапромикситов заметно превосходят показатели аналогичные для других низкометаморфизованных углей Кузбасса [7].

С целью интенсификации процессов ожижения твердых топлив конверсию последних обычно проводят в присутствии различных

каталитических добавок, содержащих переходные металлы, которые способствуют значительному усилению реакций гидрирования и крекинга угольного сырья, а также реакций удаления гетероатомов из ожижаемых углей [1-4, 8-10]. Наиболее распространенными каталитическими материалами являются композиции на основе оксидов, гидроксидов или сульфидов железа, а также различные соединения молибдена или Мосодержащие катализаторы, широко используемые в нефтепереработке [1-3, 9, 10]. Так, показано [11], что в процессе гидрогенизации барзасского угля (Т ~400-430°С и Р ~7 МПа) в присутствии железосодержащего катализатора и нефтяного остатка (в качестве растворителя) в газообразные и жидкие продукты превращается 94-97% его органической массы; при этом выход легких жидких углеводородов (т. кип. < 200°С), которые состояли в основном из парафинов, достигает 24-28 масс.%.

Реакции терморазложения углей до более мелких фрагментов, происходящие в водородной среде при высоких температурах и давлениях, можно рассматривать как важную стадию процесса их прямого гидрирования [12]. Поэтому изучение термораспада угольного вещества в различных

Таблица 1. Характе	ристики исследуемых	с образцов ба	арзасских сал	промикситов

Table 1. Characteristics of the studied samples of the Barzas sapromixite

Ofmanou	Технический анализ (масс.%)		Элементный анализ (масс.%, в пересчете на <i>daf</i>)				Атомное		
Ооразец угля	Wa	A ^d	\mathbf{V}^{daf}	С	Н	Ν	S	О (по раз- ности)	отно- шение H/C
Барзасский сапромиксит («рогожка»)	3.1	29.2	69.6	81.71	8.73	0.47	0.89	8.20	1.28
Барзасский сапромиксит («плитка»)	1.7	25.8	50.1	84.78	8.91	0.56	1.24	4.51	1.26

средах дает ценную информацию об основных закономерностях образования продуктов его превращений в зависимости от технологических параметров процесса термообработки твердого топлива. В настоящей работе изучалось влияние добавок соединений железа, молибдена И промышленного СоО-МоО₃/Аl₂О₃-катализатора (AlCoMo-кт) на процессы превращений двух распространенных наиболее модификаций барзасских углей [плитчатой формы («плитки») и продукта ее выветривания («рогожки»)] при их ожижении в углекислотной и водородной средах.

Экспериментальная часть

характеристики Основные исследуемых модификаций барзасских углей приведены в табл. 1. Для проведения экспериментов по ожижению приготовлены фракции были этих 2-x модификаций с размерами частиц ~ 1-3 мм. Указанные фракции были использованы лля приготовления 2-х серий образцов барзасских углей, содержащих различные каталитические добавки на основе переходных металлов: 1) 1 масс.% МоО₃ (путем пропитки угольных частиц водными растворами димолибдата аммония с последующей сушкой импрегнатов при 120°С в течение 4 ч); 2) 5 масс.% Fe₂O₃ (путем пропитки угольных частиц водными растворами нонагидрата нитрата железа (III) с последующей сушкой импрегнатов при 120°С в течение 4 ч) и 3) ~11 масс.% промышленного АlCoMo-катализатора гидроочистки (путем смешивания частиц угля с частицами катализатора того же размера). Кроме того, на основе фракций образцов плитчатого угля были также приготовлены три серии барзасских углей с различными содержаниями Fe₂O₃ (0,3-7,0 масс.%), МоО3 (0,5-7,0 масс.%) и АlCoMoкатализатора (2,4-20,0 масс.%).

Технический анализ углей проводили с использованием общепринятых методик [13, с. 116-143], а их элементный анализ выполнялся с помощью элементного анализатора Flash 2000 (Thermo Fisher Scientific, США). Эксперименты по ожижению исследуемых углей проводились в -----атмосферах CO₂ и H₂ при температуре ~475°C и в интервале давлений газовой среды от 7,0 до 9,0 МПа (продолжительность термообработки - 20 мин) с использованием микроавтоклава объемом ~20 см³ (более подробно детали экспериментов приведены в работах [14, 15]). В результате термической обработки барзасского сапромиксита обычно образуются три основных типа продуктов [14, 15]: 1) газообразные продукты; 2) твердые продукты, содержащие смолу, и 3) небольшие количества (около 3-5 масс.%) жидких продуктов, представляющих собой водные растворы органических вешеств (последние иногла появлялись после термообработки сапромиксита при 475°С). Содержание «угольных жидкостей» (мальтенов + асфальтенов) в содержащих смолу твердых продуктах превращений углей определялось методом их последовательной экстракции в аппарате Сокслета, сначала химически чистым н-гексаном (для выделения мальтенов), а затем аналитически чистым бензолом (для разделения асфальтенов и неэкстрагируемого остатка). Предварительно было установлено, что в исходном барзасском угле (как в «плитке», так и в «рогожке») мальтены и асфальтены отсутствовали. Выходы продуктов превращений барзасских углей в пересчете на сухую беззольную массу (daf) или органическую массу угля (ОМУ) рассчитывались следующим образом:

$Y_g = [(m_c - m_s - m_w)/m_c] x$	$100/[100 - W^a - C_{cat} - (100)]$
$-C_{cat}$)A ^d /100]	(1)
$Y_w = [m_w/m_c] \times 100/[100]$	$0 - W^{a} - C_{cat} - (100 - $
C_{cat})A ^d /100]	(2)
$Y_m = [m_m/m_c] \times 100/[100]$	$0 - W^a - C_{cat} - (100 -$
C_{cat})A ^d /100]	(3)
$Y_a = [m_a/m_c] \times 100/[100]$	$V - W^a - C_{cat} - (100 - 100)$
C_{cat})A ^d /100]	(4),

где Y_g , Y_w , Y_m и Y_a – выходы газов, водной фазы, мальтенов (веществ, растворимых в *н*-гексане) и асфальтенов (веществ, растворимых в бензоле, но не растворимых в *н*-гексане) в пересчете ОМУ, масс. %, соответственно; A^d и W^a

77

Рис. 1. Влияние каталитических добавок на выходы жидких (мальтены + асфальтены) и газообразных продуктов при ожижении плитчатого барзасского угля (а) и продукта его выветривания («рогожки») (b) в среде CO₂ (T = 475 ℃, P ~ 7-9 MПа)

Fig. 1. Effects of catalytic additives on the yields of liquid (maltenes + asphaltenes) and gaseous products during liquefaction of Barzas tile-like coal (a) and the product of its weathering ("gunny-like coal") (b) in $a CO_2$ environment ($T = 475 \,^{\circ}\text{C}$, $P \sim 7-9 \,\text{MPa}$)

Рис. 2. Влияние каталитических добавок на выходы жидких (мальтенов + асфальтенов) и газообразных продуктов при ожижении плитчатого барзасского угля (а) и продукта его

выветривания («рогожки») (b) в среде H_2 ($T = 475 \,$ °C, $P \sim 7-9 M\Pi a$) Fig. 2. Effects of catalytic additives on the yields of liquid (maltenes + asphaltenes) and gaseous products during liquefaction of Barzas tile-like coal (a) and the product of its weathering ("gunny-like coal") (b) in an H_2 environment ($T = 475 \,$ °C, $P \sim 7-9 MPa$)

содержания золы и влаги в угольном сырье, масс.
%, соответственно; С_{cat} – концентрация каталитической добавки, масс. %; m_c, m_w, ms, m_m и m_a – количества угольного сырья, водной фазы, твердых смолосодержащих продуктов, мальтенов и асфальтенов, *г*, соответственно. Эффективность

процесса ожижения угля (выход «угольных жидкостей») определялся как сумма выходов мальтенов и асфальтенов, масс. % (*daf*).

Рис. 3. Влияние содержания $Fe_2O_3(a)$ и $MoO_3(b)$ на выход «угольных жидкостей» (мальтенов + асфальтенов, \bigcirc , \bigcirc), мальтенов (\blacksquare , \square) и асфальтенов (\blacktriangle , \triangle) при ожижении плитчатого барзасского угля в среде H_2 ($T = 475 \, ^{\circ}$, $P \sim 7.9 \, M\Pi a$) Fig. 3. Effects of $Fe_2O_3(a)$ и $MoO_3(b)$ contents on the yields of "coal liquids" (maltenes + asphaltenes, \bigcirc , \bigcirc), maltenes (\blacksquare , \square) and asphaltenes (\blacktriangle , \triangle) during the liquefaction of Barzas tile-like coal in an H_2 environment ($T = 475 \, ^{\circ}$, $P \sim 7.9 \, MPa$)

Результаты и их обсуждение

Влияние природы каталитических добавок на выходы «угольных жидкостей» при ожижении барзасского угля в различных средах представлено в виде гистограмм на рис. 1 и 2.

Как видно из рис. 1, *а* и 2, *а*, при ожижении плитчатого барзасского угля в присутствии каталитических добавок, как в углекислотной, так и водородной средах, несколько снижается выход газообразных продуктов; кроме того, при введении в состав этого угля Мо-содержащей добавки немного возрастает, по сравнению с образцом угля без катализатора, выход жидких продуктов (мальтенов и асфальтенов).

Выходы газов при ожижении образцов барзасского угля на основе «рогожки» (рис. 1, *b* и 2, *b*) были заметно выше, а выходы жидких продуктов существенно ниже,

чем в случае образцов на основе плитчатой модификации (особенно в атмосфере водорода) (ср. рис. 2, *a* и рис. 2, *b*). Такой результат может быть связан как с более высоким содержанием кислорода в выветренном плитчатом барзасском угле, так и с более высокой его зольностью по сравнению с плитчатой модификацией (см. табл. 1). Повышенное содержание кислорода в органической массе угля предполагает наличие в нем большего количества более слабых (по сравнению с углерод-углеродными) углеродкислородных связей, для разрыва которых требуются меньшие затраты энергии и при расщеплении которых образуются в основном летучие газообразные продукты (СО₂, СО и др.). С другой стороны, более высокая зольность «рогожки» означает более высокое содержание в ней минеральных компонентов, которые могут обладать заметной каталитической активностью в реакциях процессов крекинга органического вещества углей [16, 17]. Причем каталитическое влияние минеральной части углей на процессы их превращений усиливается термических с повышением концентрации минеральных компонентов [17]. Поэтому повышенное газообразование при терморазложении образцов на основе «рогожки» вполне объяснимо.

В экспериментах по влиянию природы каталитических добавок на ожижение барзасских углей наибольшие выходы "угольных жидкостей" (~35 масс.% в пересчете на ОМУ) были получены при термообработке плитчатого барзасского сапромиксита в среде водорода с добавкой 1 масс.% МоО₃.

В результате исследований серии образцов плитчатого барзасского угля с различными содержаниями MoO₃, Fe₂O₃ и AlCoMoкатализатора были получены концентрационные зависимости влияния каталитических добавок на выходы продуктов ожижения (рис. 3 *a*, *b* и рис. 4);

Рис. 4. Влияние концентрации AlCoMo-катализатора на выходы «угольных жидкостей» (мальтенов + асфальтенов, O), мальтенов (\diamondsuit) и асфальтенов (∇) при ожижении плитчатого барзасского угля в среде водорода ($T = 475 \, ^\circ C$, $P \sim 7-9$

МПа)

Fig. 4. Effects of AlCoMo catalyst concentration on the yields of "coal liquids" (maltenes + asphaltenes, O), maltenes (\diamondsuit) and asphaltenes (∇) during the liquefaction of Barzas tile-like coal in an H₂ environment ($T = 475 \,$ °C, $P \sim 7-9 \,$ MPa)

эти зависимости имели экстремальный характер с максимальными значениями суммарного выхода «угольных жидкостей» в области ~0,5 масс.% МоО3. ~2-3 масс.% Fe2O3 и ~11 масс.% AlCoMo-кт. соответственно. В случае AlCoMo-катализатора этот максимум был выражен слабо (см. рис. 4), что, вероятно, объясняется недостаточной степенью контакта активных компонентов катализатора с реагирующим углем (образцы с добавками АІСоМо-кт готовились путем механического смешения с углем). Однако с учетом химического состава данного катализатора (~12 масс.% МоО3 и ~3,4 масс.% Со₃О₄), по содержанию молибдена (~1 масс.% МоО3) наблюдаемый слабый максимум на концентрационной зависимости выходов продуктов ожижения от содержания добавок АІСоМо-кт приблизительно соответствовал области максимальной активности молибденсодержащих образцов барзасских углей (см. рис. 3, b).

Заметное небольших влияние добавок молибдена на увеличение выхода продуктов ожижения, очевидно, связано с их высокой дисперсностью оксида молибдена (VI)(и, следовательно, с более высокой поверхностью активного компонента), что ранее отмечалось и другими авторами [2, 9, 10, 18]. При высоких концентрациях добавок молибдена (> 0,5 масс.% MoO_3) и, соответственно, меньшей их

дисперсности, активность молибденсодержащих добавок постепенно снижается (рис. 3, *b*). Изучение концентрационных зависимостей показало, что наибольшее влияние на суммарный выход «угольных жидкостей» (достигавший 36-37 масс.% против ~29 масс.% в случае угля без катализатора) оказывали добавки соединений железа (~2-3 масс.% Fe₂O₃) (рис. 3, *a*); причем максимумы выходов мальтенов наблюдались при более высоких концентрациях железа (~4-5 масс.% Fe₂O₃), а асфальтенов – при более низких (0,3-2,0 масс.% Fe₂O₃).

Заключение

использованием лабораторного C микроавтоклава с рабочим объемом ~20 см³ исследованы процессы ожижения 2-х наиболее распространенных модификаций барзасских сапромикситов [плитчатой формы («плитки») и выветривания («рогожки»)] продукта ee в присутствии И в отсутствие различных каталитических добавок на основе соединений переходных металлов, как в водородной, так и в углекислотной средах (Т ~475°С и Р ~7.0-9.0 МПа).

Эксперименты по влиянию природы каталитических добавок на процесс ожижения показали, что термообработка плитчатой модификации барзасских сапромикситов в присутствии различных каталитических добавок

79

(Fe₂O₃, MoO₃, AlCoMo-катализатор) приводит к снижению выхода газообразных продуктов в обеих исследованных средах. При этом выходы газов при ожижении образцов на основе барзасской «рогожки» были заметно выше, а выходы жидких продуктов существенно ниже, чем в случае образцов на основе «плитки» (особенно в атмосфере водорода).

Концентрационные зависимости суммарных выходов продуктов ожижения (мальтенов и асфальтенов) в среде водорода от содержания исследованных каталитических добавок имели экстремальный характер с максимальными значениями в области ~0,5 масс.% MoO₃, ~2-3 масс.% Fe₂O₃ и ~11 масс.% AlCoMo-кт. При этом наибольший выход (до 36-37 масс.%) был получен при гидроожижении образцов плитчатого барзасского угля в присутствии добавок соединений железа (~2-3 масс.% Fe₂O₃).

Авторы выражают глубокую признательность сотрудникам Кемеровского регионального центра коллективного использования СО РАН (КемЦКП) за техническую помощь в проведении элементного анализа образцов барзасских сапромикситов. Авторы также благодарны сотруднику кафедры теплоэнергетики Кузбасского государственного технического университета Д.М. Косареву за проведение некоторых технических анализов образцов исходных барзасских углей.

СПИСОК ЛИТЕРАТУРЫ

1. Vasireddy S., Morreale B., Cugini A., Song C., Spivey J.J. Clean Liquid Fuels from Direct Coal Liquefaction: Chemistry, Catalysis, Technological Status and Challenges // Energy & Environ. Sci. – 2011. – V. 4. – N 2. – P. 311-345. DOI: 10.1039/C0EE00097C.

2. Малолетнев А. С., Шпирт М. Я. Современное состояние технологий получения жидкого топлива из углей // Рос. хим. ж. – 2008. – Т. 52. – № 6. – С. 44-52.

3. Kaneko T., Derbyshire F., Makino E., Gray D., M. Tamura M. Coal Liquefaction // Ullmann's Encyclopedia of Industrial Chemistry. V. 9. – Weinheim (Germany): Wiley-VCH, 2012. – P. 311-389. DOI: 10.1002/14356007.a07_197.

4. Ali A., Zhao C. Direct Liquefaction Techniques on Lignite Coal: A Review // Chin. J. Catal. – 2020. – V. 41. – N 3. – P. 375-389. DOI: 10.1016/S1872-2067(19)63492-3.

5. Сапропелиты Барзасского месторождения Кузбасса / Г. И. Грицко, В. А. Каширцев, Б. Н. Кузнецов и др. (под ред. акад. А. Э. Конторовича). – Новосибирск: ИНГГ СО РАН, 2011. – 126 с.

6. Patrakov Y. F., Denisov S. V. Barzas Coal Liquefaction under Non-Isothermal Conditions // Fuel. – 1991. – V. 70. – N 2. – P. 267-270. DOI: 10.1016/0016-2361(91)90164-6.

7. Petrov I. Y., Tryasunov B. G. Predicting the Possibility for Deep Hydroprocessing of Some Kuzbass Coals // E3S Web of Conferences. – 2017. – V. 21. – 01004. DOI: 10.1051/e3sconf/20172101004.

8. Weller S. W. Catalysis and Catalyst Dispersion in Coal Liquefaction // Energy & Fuels. – 1994. – V. 8. – N 2. – P. 415-420. DOI: 10.1021/ef00044a020.

9. Derbyshire F. J. Role of Catalysis in Coal Liquefaction Research and Development // Energy & Fuels. – 1989. – V. 3. – N 3. – P. 273-277. DOI: 10.1021/ef00015a001.

10.Mochida I., Sakanishi K., Suzuki N., Sakurai M., Tsukui Y., Kaneko T. Progresses of Coal Liquefaction Catalysts in Japan // Catal. Srv. Jpn. – 1998. – V. 2. – N 1. – P. 17-30. DOI: 10.1023/A:1019049618725.

11.Sharypov V. I., Kuznetsov B. N., Beregovtsova N. G., Startsev A. N., Parmon V. N. Catalytic Hydroliquefaction of Barzass Liptobiolitic Coal in a Petroleum Residue as a Solvent // Fuel. – 2006. – V. 85. – NN 7-8. – P. 918-922. DOI: 10.1016/j.fuel.2005.10.017.

12.Hook M., Aleklett K. A Review on Coal-to-Liquid Fuels and Its Coal Consumption // Int. J. Energy Res. -2010. -V. 34. -N 10. -P. 848-864. DOI: 10.1002/er.1596.

13.Speight J. G. Handbook of Coal Analysis. 2nd Edition. Hoboken, NJ (USA): John Wiley & Sons. Inc., 2015. – 368 p.

14.Petrov I., Ushakov K., Bogomolov A., Tryasunov B. IR Spectra of Low-Metamorphosed Barzas Coal Subjected to Thermal Treatment in Carbon Dioxide Medium // E3S Web of Conferences. – 2018. – V. 41. – 01037. DOI: 10.1051/e3sconf/20184101037.

15.Petrov I. Y., Ushakov K. Y., Bogomolov A. R., Tryasunov B. G. IR Spectra of Low-Metamorphosed Barzas Coal Thermally Treated in Hydrogen Medium at Various Temperatures // Int. J. Eng. & Techn. – 2018. – V. 7. – N 3.32. – P. 161-165. DOI: 10.14419/ijet.v7i3.32.24668.

16.Li W., Bai Z.-Q., Bai J., Li X. Transformation and Roles of Inherent Mineral Matter in Direct Coal Liquefaction: A Mini-Review // Fuel. – 2017. – V. 197. – P. 209-216. DOI: 10.1016/j.fuel.2017.02.024.

17.Haenel M. W. Catalysis in Direct Coal Liquefaction // Handbook of Heterogeneous Catalysis. (G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Eds.). 2nd Edition. Weinheim (Germany): Wiley-VCH. 2008. – P. 3023-3036.

18. Титова Т. А., Пчелина Д. П. Молибденовые и железные катализаторы гидрогенизации угля // XTT. – 1978. – № 5. – С. 35-36.

REFERENCES

1. Vasireddy S., Morreale B., Cugini A., Song C., Spivey J. J. Clean Liquid Fuels from Direct Coal Liquefaction: Chemistry, Catalysis, Technological Status and Challenges // Energy & Environ. Sci. – 2011. – V. 4. – N 2. – P. 311-345. DOI: 10.1039/C0EE00097C.

2. Maloletnev A. S., Shpirt M. Ya. Present State of Coal Liquefaction Technologies // Russ. J. Gen. Chem. – 2009. – V. 79. – N 11. – P. 2499-2508 (Engl. Transl.). DOI: 10.1134/S1070363209110383.

3. Kaneko T., Derbyshire F., Makino E., Gray D., M. Tamura M. Coal Liquefaction // Ullmann's Encyclopedia of Industrial Chemistry. V. 9. – Weinheim (Germany): Wiley-VCH, 2012. – P. 311-389. DOI: 10.1002/14356007.a07_197.

4. Ali A., Zhao C. Direct Liquefaction Techniques on Lignite Coal: A Review // Chin. J. Catal. – 2020. – V. 41. – N 3. – P. 375-389. DOI: 10.1016/S1872-2067(19)63492-3.

5. Sapropelity Barzasskogo mestorozhdeniya Kuzbassa [Sapropelites of the Barzas Deposit of Kuzbass] / G. I. Gritsko, V. A. Kashirtsev, B. N. Kuznetsov et al. (Ed. by Acad. A. E. Kontorovich). – Novosibirsk: IPGG SB RAS Publishing House, 2011. – 126 p. (in Russian).

6. Patrakov Y. F., Denisov S. V. Barzas Coal Liquefaction under Non-Isothermal Conditions // Fuel. – 1991. – V. 70. – N 2. – P. 267-270. DOI: 10.1016/0016-2361(91)90164-6.

7. Petrov I. Y., Tryasunov B. G. Predicting the Possibility for Deep Hydroprocessing of Some Kuzbass Coals // E3S Web of Conferences. – 2017. – V. 21. – 01004. DOI: 10.1051/e3sconf/20172101004.

8. Weller S. W. Catalysis and Catalyst Dispersion in Coal Liquefaction // Energy & Fuels. – 1994. – V. 8. – N 2. – P. 415-420. DOI: 10.1021/ef00044a020.

9. Derbyshire F. J. Role of Catalysis in Coal Liquefaction Research and Development // Energy & Fuels. – 1989. – V. 3. – N 3. – P. 273-277. DOI: 10.1021/ef00015a001.

10.Mochida I., Sakanishi K., Suzuki N., Sakurai M., Tsukui Y., Kaneko T. Progresses of Coal Liquefaction Catalysts in Japan // Catal. Srv. Jpn. – 1998. – V. 2. – N 1. – P. 17-30. DOI: 10.1023/A:1019049618725.

11.Sharypov V. I., Kuznetsov B. N., Beregovtsova N. G., Startsev A. N., Parmon V. N. Catalytic Hydroliquefaction of Barzass Liptobiolitic Coal in a Petroleum Residue as a Solvent // Fuel. – 2006. – V. 85. – NN 7-8. – P. 918-922. DOI: 10.1016/j.fuel.2005.10.017.

12.Hook M., Aleklett K. A Review on Coal-to-Liquid Fuels and Its Coal Consumption // Int. J. Energy Res. – 2010. – V. 34. – N 10. – P. 848-864. DOI: 10.1002/er.1596.

13.Speight J. G. Handbook of Coal Analysis. 2nd Edition. Hoboken, NJ (USA): John Wiley & Sons. Inc., 2015. – 368 p.

14.Petrov I., Ushakov K., Bogomolov A., Tryasunov B. IR Spectra of Low-Metamorphosed Barzas Coal Subjected to Thermal Treatment in Carbon Dioxide Medium // E3S Web of Conferences. – 2018. – V. 41. – 01037. DOI: 10.1051/e3sconf/20184101037.

15.Petrov I. Y., Ushakov K. Y., Bogomolov A. R., Tryasunov B. G. IR spectra of Low-Metamorphosed Barzas Coal Thermally Treated in Hydrogen Medium at Various Temperatures // Int. J. Eng. & Techn. – 2018. – V. 7. – N 3.32. – P. 161-165. DOI: 10.14419/ijet.v7i3.32.24668.

16.Li W., Bai Z.-Q., Bai J., Li X. Transformation and Roles of Inherent Mineral Matter in Direct Coal Liquefaction: A Mini-Review // Fuel. – 2017. – V. 197. – P. 209-216. DOI: 10.1016/j.fuel.2017.02.024.

17.Haenel M. W. Catalysis in Direct Coal Liquefaction // Handbook of Heterogeneous Catalysis. (G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Eds.). 2nd Edition. Weinheim (Germany): Wiley-VCH. 2008. – P. 3023-3036.

18. Titova T. A., Pchelina D. P. Molibdenovye i zhelezhye katalizatory guidroguenizatsii uglya [Molybdena and Iron Oxide Catalysts for Coal Hydrogenation] // Khim. Tverd. Topl. [Solid Fuel Chem.] – 1978. – N 5. – P. 35-36. (in Russian).

Поступило в редакцию 10.12.2020 Received 10 December 2020